Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils.
Acc Chem Res. 2013 May 10;
Authors: Tang M, Comellas G, Rienstra CM
Abstract
Solid-state NMR (SSNMR) spectroscopy has become an important technique for studying the biophysics and structure biology of proteins. This technique is especially useful for insoluble membrane proteins and amyloid fibrils, which are essential for biological functions and are associated with human diseases. In the past few years, as major contributors to the rapidly advancing discipline of biological SSNMR, we have developed a family of methods for high-resolution structure determination of microcrystalline, fibrous, and membrane proteins. Key developments include order-of-magnitude improvements in sensitivity, resolution, instrument stability, and sample longevity under data collection conditions. These technical advances now enable us to apply new types of 3D and 4D experiments to collect atomic-resolution structural restraints in a site-resolved manner, such as vector angles, chemical shift tensors, and internuclear distances, throughout large proteins. In this Account, we present the technological advances in SSNMR approaches towards protein structure determination. We also describe the application of those methods for large membrane proteins and amyloid fibrils. Particularly, the SSNMR measurements of an integral membrane protein DsbB support the formation of a charge-transfer complex between DsbB and ubiquinone during the disulfide bond transfer pathways. The high-resolution structure of the DsbA-DsbB complex demonstrates that the joint calculation of X-ray and SSNMR restraints for membrane proteins with low-resolution crystal structure is generally applicable. The SSNMR investigations of ?-synuclein fibrils from both wild type and familial mutants reveal that the structured regions of ?-synuclein fibrils include the early-onset Parkinson's disease mutation sites. These results pave the way to understanding the mechanism of fibrillation in Parkinson's disease.
PMID: 23659727 [PubMed - as supplied by publisher]
[NMR paper] Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Related Articles Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Annu Rev Biophys. 2013 Mar 22;
Authors: Comellas G, Rienstra CM
Abstract
Protein structure determination methods using magic-angle spinning solidstate nuclear magnetic resonance (MAS SSNMR) have experienced a remarkable...
nmrlearner
Journal club
0
03-27-2013 03:33 PM
[NMR paper] Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10289-92
Authors: Antzutkin ON, Iuga D, Filippov AV, Kelly RT, Becker-Baldus J, Brown SP, Dupree R
PMID: 22976560
nmrlearner
Journal club
0
02-16-2013 08:00 PM
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Bioorg Med Chem. 2011 Aug 27;
Authors: Masuda Y, Fukuchi M, Yatagawa T, Tada M, Takeda K, Irie K, Akagi KI, Monobe Y, Imazawa T, Takegoshi K
Abstract
Aggregation of 42-residue amyloid ?-protein (A?42) plays a pivotal role in the etiology of Alzheimer's disease (AD). Curcumin, the yellow pigment in the rhizome of turmeric, attracts...
nmrlearner
Journal club
0
09-20-2011 03:10 PM
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Marvin J. Bayro, Galia T. Debelouchina, Matthew T. Eddy, Neil R. Birkett, Catherine E. MacPhee, Melanie Rosay, Werner E. Maas, Christopher M. Dobson and Robert G. Griffin
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203756x/aop/images/medium/ja-2011-03756x_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203756x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
08-13-2011 02:47 AM
Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s ? by Solid-State NMR Spectroscopy
Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s ? by Solid-State NMR Spectroscopy
Sudhakar Parthasarathy, Fei Long, Yifat Miller, Yiling Xiao, Dan McElheny, Kent Thurber, Buyong Ma, Ruth Nussinov and Yoshitaka Ishii
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1072178/aop/images/medium/ja-2010-072178_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja1072178
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA ...
nmrlearner
Journal club
0
02-22-2011 11:06 PM
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
J Am Chem Soc. 2010 Oct 6;132(39):13765-75
Authors: Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH
We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s...
nmrlearner
Journal club
0
01-21-2011 12:00 PM
Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR.
Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR.
Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR.
J Mol Biol. 2010 Nov 18;
Authors: Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A
Despite its importance in the context of conformational diseases, structural information is still sparse for protein fibrils. Hydrogen/deuterium exchange measurements of backbone amides allow to identify hydrogen-bonding patterns and reveal pertinent information about...
nmrlearner
Journal club
0
11-26-2010 05:32 PM
[NMR paper] Solid-state NMR approaches for studying membrane protein structure.
Solid-state NMR approaches for studying membrane protein structure.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--arjournals.annualreviews.org-images-AnnualReviews100x25.gif Related Articles Solid-state NMR approaches for studying membrane protein structure.
Annu Rev Biophys Biomol Struct. 1992;21:25-47
Authors: Smith SO, Peersen OB