Related ArticlesAddressing the overlap problem in the quantitative analysis of two dimensional NMR spectra: application to (15)N relaxation measurements.
J Biomol NMR. 2004 Nov;30(3):347-52
Authors: Tugarinov V, Choy WY, Kupce E, Kay LE
A quantitative analysis of 2D (1)H-(15)N spectra is often complicated by resonance overlap. Here a simple method is presented for resolving overlapped correlations by recording 2D projection planes from HNCO data sets. Applications are presented involving the measurement of (15)N T(1rho) relaxation rates in a high molecular weight protein, malate synthase G, and in a system that exchanges between folded and unfolded states, the drkN SH3 domain. By supplementing relaxation data recorded in the conventional way as a series of 2D (1)H-(15)N data sets with a series of a pair of projection planes the number of dynamics probes is increased significantly for both systems studied.
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins
Abstract NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional -proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across...
nmrlearner
Journal club
0
12-05-2011 04:07 AM
A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data
A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data
Abstract The measurement of 1H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metal-chelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the paramagnetic center. Here, we present a novel, disulfide-linked nitroxide spin label, R1p, as...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links.
Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links.
Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links.
J Agric Food Chem. 2011 Jan 10;
Authors: Monogioudi E, Permi P, Filpponen I, Lienemann M, Li B, Argyropoulos D, Buchert J, Mattinen ML
Cross-linking of ?-casein by Trichoderma reesei tyrosinase (TrTyr) and Streptoverticillium mobaraense transglutaminase (Tgase) was analyzed by (31)P nuclear magnetic...
nmrlearner
Journal club
0
01-12-2011 11:11 AM
[NMR paper] Inverse methods in two-dimensional NMR spectral analysis.
Inverse methods in two-dimensional NMR spectral analysis.
Related Articles Inverse methods in two-dimensional NMR spectral analysis.
J Magn Reson. 2003 May;162(1):141-57
Authors: van Beek JD, Meier BH, Schäfer H
Solid-state NMR is a valuable technique for the study of disordered materials. Analysis of such spectra usually involves solution of so-called ill-posed inverse problems. Here we present a strategy for the analysis of two-parameter two-dimensional NMR problems and test it on 2D DECODER and DOQSY experiments. Using Monte Carlo tests,...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by S
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy.
Related Articles Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy.
J Am Chem Soc. 2010 Oct 26;
Authors: Schanda P, Meier BH, Ernst M
Characterization of protein dynamics by solid-state NMR spectroscopy requires robust and accurate measurement protocols, which are not yet fully developed. In this study, we investigate the backbone dynamics of microcrystalline ubiquitin...
nmrlearner
Journal club
0
10-29-2010 07:05 PM
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by S
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy
Paul Schanda, Beat H. Meier and Matthias Ernst
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja100726a/aop/images/medium/ja-2010-00726a_0001.gif
Journal of the American Chemical Society
DOI: 10.1021/ja100726a
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/vMvBmzNs148
nmrlearner
Journal club
0
10-26-2010 08:48 PM
[NMR paper] Quantitative analysis of 1H NMR detected proteins in the rat cerebral cortex in vivo
Quantitative analysis of 1H NMR detected proteins in the rat cerebral cortex in vivo and in vitro.
Related Articles Quantitative analysis of 1H NMR detected proteins in the rat cerebral cortex in vivo and in vitro.
NMR Biomed. 1993 Jul-Aug;6(4):242-7
Authors: Kauppinen RA, Niskanen T, Hakumäki J, Williams SR
Spectral editing experiments were used to quantify CH3 groups from macromolecular species in the chemical shift region from 1.2 to 1.4 ppm of rat cerebrum in vivo. Two peaks centred at 1.22 and 1.40 ppm were revealed when irradiation was...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
[NMR analysis blog] Fighting against peak overlap – Introducing Global Spectral Deconvolution (GSD)
Fighting against peak overlap – Introducing Global Spectral Deconvolution (GSD)
1H NMR is for sure the most powerful technique for structure elucidation, especially for small organic molecules. Typically, an organic chemist uses the chemical shift, coupling constants and integration information contained in an 1H-NMR spectrum to either verify or elucidate an unknown compound. Of course, it’s quite common that a simple 1H-NMR spectrum is not enough to unambiguously confirm a structure and thus other NMR experiments (e.g. 13C-NMR, HSQC, COSY, etc) are used to get more structural information....