BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-11-2017, 09:20 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Acidity Strength of Solid Catalysts Probed by Hyperpolarized Natural Abundance 17O NMR Spectroscopy

Acidity Strength of Solid Catalysts Probed by Hyperpolarized Natural Abundance 17O NMR Spectroscopy


Observation of Brønsted acid sites: By enhancing the solid-state NMR signals of 17O at natural abundance with dynamic nuclear polarization (DNP), Pruski et al. were able to measure oxygen–proton distances accurately with sub-picometer precision. The results give insight into the Brønsted acidity of a range of solid acid catalysts.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Natural Abundance 17O DNP NMR Provides Precise O-H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts
Natural Abundance 17O DNP NMR Provides Precise O-H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts Brønsted acidic sites on catalyst surfaces are observed by 17O dynamic nuclear polarization-enhanced NMR spectroscopy, which hyperpolarizes nuclei by microwave-induced saturation of electrons. In their Communication (DOI: 10.1002/anie.201704032), M. Pruski et al. report the measurement of O-H distances with sub-picometer precision. The length of the O-H bond is directly related to the Brønsted acidity of the sites and is also a reporter of the formation of...
nmrlearner Journal club 0 06-12-2017 01:48 PM
[NMR paper] Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations.
Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations. Related Articles Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations. Solid State Nucl Magn Reson. 2017 Mar 18;: Authors: Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M Abstract (1)H-detected solid-state NMR in combination with (1)H/(2)D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins....
nmrlearner Journal club 0 03-28-2017 03:06 PM
Hyperpolarized NMR of plant and cancer cell extracts at natural abundance
From The DNP-NMR Blog: Hyperpolarized NMR of plant and cancer cell extracts at natural abundance Dumez, J.N., et al., Hyperpolarized NMR of plant and cancer cell extracts at natural abundance. Analyst, 2015. 140(17): p. 5860-3. http://www.ncbi.nlm.nih.gov/pubmed/26215673
nmrlearner News from NMR blogs 0 12-03-2015 02:03 AM
Quantitative Structural Constraints for Organic Powders at Natural Isotopic Abundance Using Dynamic Nuclear Polarization Solid-State NMR Spectroscopy
From The DNP-NMR Blog: Quantitative Structural Constraints for Organic Powders at Natural Isotopic Abundance Using Dynamic Nuclear Polarization Solid-State NMR Spectroscopy Mollica, G., et al., Quantitative Structural Constraints for Organic Powders at Natural Isotopic Abundance Using Dynamic Nuclear Polarization Solid-State NMR Spectroscopy. Angewandte Chemie, 2015. 127(20): p. 6126-6129. http://dx.doi.org/10.1002/ange.201501172
nmrlearner News from NMR blogs 0 10-03-2015 09:52 AM
Natural Abundance 17O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy
Natural Abundance 17O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy Fre?de?ric A. Perras, Takeshi Kobayashi and Marek Pruski http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b03905/20150629/images/medium/ja-2015-03905b_0003.gif Journal of the American Chemical Society DOI: 10.1021/jacs.5b03905 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/2XY9E0YdGEg
nmrlearner Journal club 0 06-29-2015 07:21 PM
Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance
From The DNP-NMR Blog: Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance Takahashi, H., S. Hediger, and G. De Paepe, Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance. Chem Commun (Camb), 2013. 49(82): p. 9479-81. http://www.ncbi.nlm.nih.gov/pubmed/24013616
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
[NMR paper] Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance.
Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance. Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance. Chem Commun (Camb). 2013 Sep 6; Authors: Takahashi H, Hediger S, De Paëpe G Abstract We introduce a general approach for dynamic nuclear polarization (DNP) enhanced solid-state NMR that overcomes the current problems in DNP experiments caused by the use...
nmrlearner Journal club 0 09-10-2013 08:44 PM
Identifying Guanosine Self Assembly at Natural Isotopic Abundance by High-Resolution 1H and 13C Solid-State NMR Spectroscopy
Identifying Guanosine Self Assembly at Natural Isotopic Abundance by High-Resolution 1H and 13C Solid-State NMR Spectroscopy Amy L. Webber, Stefano Masiero, Silvia Pieraccini, Jonathan C. Burley, Andrew S. Tatton, Dinu Iuga, Tran N. Pham, Gian Piero Spada and Steven P. Brown http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206516u/aop/images/medium/ja-2011-06516u_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja206516u http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 11-18-2011 04:35 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:57 PM.


Map