Provided that care is taken in adjusting the WATERGATE element of a 1Hâ??15N TROSY-HSQC experiment, such that neither the water magnetization nor the 1Hα protons are inverted by its final 180° pulse, 3JHNHα couplings can be measured directly from splittings in the 1H dimension of the spectrum. With band-selective 1H decoupling, very high 15N resolution can be achieved. A complete set of 3JHNHα values, ranging from 3.4 to 10.1Â*Hz was measured for the 56-residue third domain of IgG-binding protein G (GB3). Using the Hâ??Nâ??Cαâ??Hα dihedral angles extracted from a RDC-refined structure of GB3, 3JHNHα values predicted by a previously parameterized Karplus equation agree to within a root-mean-square deviation (rmsd) of 0.37Â*Hz with the experimental data. Values measured for the Alzheimerâ??s implicated Aβ1â??40 peptide fit to within an rmsd of 0.45Â*Hz to random coil 3JHNHα values.
[NMR paper] Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy.
Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy.
Related Articles Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy.
J Chem Phys. 2014 Sep 14;141(10):104202
Authors: Hou G, Lu X, Vega AJ, Polenova T
Abstract
We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear (1)H-X (X =...
nmrlearner
Journal club
0
09-15-2014 07:13 PM
Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods
Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods
<div class="Abstract" lang="en">Abstract <div class="normal">While extracting dynamics parameters from backbone 15N relaxation measurements in proteins has become routine over the past two decades, it is increasingly recognized that accurate quantitative analysis can remain limited by the potential presence of systematic errors associated with the measurement of 15N R1 and R2 or R1Ï? relaxation rates as well as heteronuclear 15N-{1H} NOE values. We show that systematic errors in such measurements can...
nmrlearner
Journal club
0
06-16-2012 06:01 AM
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities
Abstract Analogous to the recently introduced ARTSY method for measurement of one-bond 1Hâ??15N residual dipolar couplings (RDCs) in large perdeuterated proteins, we introduce methods for measurement of base 13Câ??1H and 15Nâ??1H RDCs in protonated nucleic acids. Measurements are based on quantitative analysis of intensities in 1Hâ??15N and 13Câ??1H TROSY-HSQC spectra, and are illustrated for a 71-nucleotide adenine riboswitch. Results compare favorably with those of conventional...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins
Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins
Abstract It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less...
nmrlearner
Journal club
0
09-17-2011 10:20 AM
Accurate measurement of one-bond H-X heteronuclear dipolar couplings in MAS solid-state NMR.
Accurate measurement of one-bond H-X heteronuclear dipolar couplings in MAS solid-state NMR.
Accurate measurement of one-bond H-X heteronuclear dipolar couplings in MAS solid-state NMR.
J Magn Reson. 2011 Mar 21;
Authors: Schanda P, Meier BH, Ernst M
The accurate experimental determination of dipolar-coupling constants for one-bond heteronuclear dipolar couplings in solids is a key for the quantification of the amplitudes of motional processes. Averaging of the dipolar coupling reports on motions on time scales up to the inverse of the coupling...
nmrlearner
Journal club
0
04-13-2011 11:57 PM
Accurate Measurement of One-Bond H-X Heteronuclear Dipolar Couplings in MAS Solid-State NMR
Accurate Measurement of One-Bond H-X Heteronuclear Dipolar Couplings in MAS Solid-State NMR
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 21 March 2011</br>
Paul, Schanda , Beat H., Meier , Matthias, Ernst</br>
The accurate experimental determination of dipolar-coupling constants for one-bond heteronuclear dipolar couplings in solids is a key for the quantification of the amplitudes of motional processes. Averaging of the dipolar coupling reports on motions on time scales up to the inverse of the coupling constant, in...
nmrlearner
Journal club
0
03-22-2011 07:30 AM
MQ-HNCO-TROSY for the measurement of scalar and residual dipolar couplings in larger
Abstract We describe a novel pulse sequence, MQ-HNCO-TROSY, for the measurement of scalar and residual dipolar couplings between amide proton and nitrogen in larger proteins. The experiment utilizes the whole 2TN polarization transfer delay for labeling of 15N chemical shift in a constant time manner, which efficiently doubles the attainable resolution in 15N dimension with respect to the conventional HNCO-TROSY experiment. In addition, the accordion principle is employed for measuring (J + D)NHs, and the multiplet components are selected with the generalized version of the TROSY scheme...
nmrlearner
Journal club
0
08-14-2010 04:19 AM
HNCO-based measurement of one-bond amide 15N-1H couplings with optimized precision
Abstract A pair of 3D HNCO-based experiments have been developed with the aim of optimizing the precision of measurement of 1JNH couplings. Both pulse sequences record 1JNH coupling evolution during the entire constant time interval that 15N magnetization is dephasing or rephasing with respect to the directly bonded 13Câ?² nucleus, with 15N13Câ?² multiple quantum coherence maintained during the 13Câ?² evolution period. The first experiment, designed for smaller proteins, produces an apparent doubling of the 1JNH coupling without any accompanying increases in line width. The second experiment...