Abstract
1H-15N NMR spin relaxation and relaxation dispersion experiments can reveal the time scale and extent of protein motions across the ps-ms range, where the ps-ns dynamics revealed by fundamental quantities R1, R2, and heteronuclear NOE can be well-sampled by molecular-dynamics simulations (MD). Although the principles of relaxation prediction from simulation are well-established, numerous NMR-MD comparisons have hitherto focused upon the aspect of order parameters S2 due to common artefacts in the prediction of transient dynamics. We therefore summarize here all necessary components and highlight existing and proposed solutions, such as the inclusion of quantum mechanical zero-point vibrational corrections, and separate MD convergence of global and local motions in coarse-grained and all-atom forcefields, respectively. To test the accuracy of MD prediction, two model proteins GB3 and Ubiquitin are used to validate five atomistic forcefields against published NMR data, supplemented by the coarse-grained forcefield MARTINI+EN. In Amber and CHARMM-type forcefields, quantitative agreement was achieved for structured elements with minimum adjustment of global parameters. Deviations from experiment occur in flexible loops and termini, indicating differences in both the extent and time-scale of backbone motions. Lack of systematic patterns and water-model dependence suggest that modeling of the local environment limits prediction accuracy. Nevertheless, qualitative accuracy in a 2 ?s-CHARMM36m Stam2 VHS-domain simulation demonstrates the potential of MD-based interpretation in combination with NMR-measured dynamics, increasing the utility of spin-relaxation in integrative structural biology.
PMID: 29294268 [PubMed - as supplied by publisher]
Conformational Dynamics and Protein–SubstrateInteraction of ABC Transporter BtuCD at the Occluded State Revealedby Molecular Dynamics Simulations
Conformational Dynamics and Protein–SubstrateInteraction of ABC Transporter BtuCD at the Occluded State Revealedby Molecular Dynamics Simulations
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00386/20161201/images/medium/bi-2016-00386h_0007.gif
Biochemistry
DOI: 10.1021/acs.biochem.6b00386
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/ugnwt-nfPl4
More...
nmrlearner
Journal club
0
12-02-2016 07:45 AM
[NMR paper] Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations.
Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations.
J Phys Chem B. 2014 May 15;118(19):5119-29
Authors: Hansen SK, Vestergaard M, Thøgersen L, Schiøtt B, Nielsen NC, Vosegaard T
Abstract
We present a method to...
nmrlearner
Journal club
0
04-22-2015 03:33 PM
[NMR paper] General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations.
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations.
Related Articles General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations.
Biochem Biophys Res Commun. 2015 Jan 16;
Authors: Liu Q, Shi C, Yu L, Zhang L, Xiong Y, Tian C
Abstract
Internal backbone dynamic motions are essential for different protein functions and...
nmrlearner
Journal club
0
01-21-2015 08:39 PM
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations
Publication date: Available online 16 January 2015
Source:Biochemical and Biophysical Research Communications</br>
Author(s): Qing Liu , Chaowei Shi , Lu Yu , Longhua Zhang , Ying Xiong , Changlin Tian</br>
Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and...
nmrlearner
Journal club
0
01-17-2015 04:14 PM
[NMR paper] Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
Related Articles Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
J Phys Chem B. 2014 Oct 28;
Authors: Allnér O, Foloppe N, Nilsson L
Abstract
Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory...
nmrlearner
Journal club
0
10-29-2014 03:51 PM
[NMR paper] Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
J Phys Chem B. 2013 Feb 1;
Authors: Camilloni C, Cavalli A, Vendruscolo M
Abstract
It has been recently...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
Rotational velocity rescaling of molecular dynamics trajectories for direct prediction of protein NMR relaxation
Rotational velocity rescaling of molecular dynamics trajectories for direct prediction of protein NMR relaxation
July 2012
Publication year: 2012
Source:Biophysical Chemistry, Volumes 168–169</br>
</br>
Rotational velocity rescaling (RVR) enables 15N relaxation data for the anisotropically tumbling B3 domain of Protein G (GB3) to be accurately predicted from 1?s of constant energy molecular dynamics simulation without recourse to any system-specific adjustable parameters. Superposition of adjacent trajectory frames yields the unique rotation axis and angle of rotation...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Abstract While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the...