BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-04-2018, 08:45 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ab-initio Prediction of NMR Spin-Relaxation Parameters from Molecular Dynamics Simulations.

Ab-initio Prediction of NMR Spin-Relaxation Parameters from Molecular Dynamics Simulations.

Related Articles Ab-initio Prediction of NMR Spin-Relaxation Parameters from Molecular Dynamics Simulations.

J Chem Theory Comput. 2018 Jan 02;:

Authors: Chen PC, Hologne M, Walker O, Hennig J

Abstract
1H-15N NMR spin relaxation and relaxation dispersion experiments can reveal the time scale and extent of protein motions across the ps-ms range, where the ps-ns dynamics revealed by fundamental quantities R1, R2, and heteronuclear NOE can be well-sampled by molecular-dynamics simulations (MD). Although the principles of relaxation prediction from simulation are well-established, numerous NMR-MD comparisons have hitherto focused upon the aspect of order parameters S2 due to common artefacts in the prediction of transient dynamics. We therefore summarize here all necessary components and highlight existing and proposed solutions, such as the inclusion of quantum mechanical zero-point vibrational corrections, and separate MD convergence of global and local motions in coarse-grained and all-atom forcefields, respectively. To test the accuracy of MD prediction, two model proteins GB3 and Ubiquitin are used to validate five atomistic forcefields against published NMR data, supplemented by the coarse-grained forcefield MARTINI+EN. In Amber and CHARMM-type forcefields, quantitative agreement was achieved for structured elements with minimum adjustment of global parameters. Deviations from experiment occur in flexible loops and termini, indicating differences in both the extent and time-scale of backbone motions. Lack of systematic patterns and water-model dependence suggest that modeling of the local environment limits prediction accuracy. Nevertheless, qualitative accuracy in a 2 ?s-CHARMM36m Stam2 VHS-domain simulation demonstrates the potential of MD-based interpretation in combination with NMR-measured dynamics, increasing the utility of spin-relaxation in integrative structural biology.


PMID: 29294268 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Conformational Dynamics and Protein–SubstrateInteraction of ABC Transporter BtuCD at the Occluded State Revealedby Molecular Dynamics Simulations
Conformational Dynamics and Protein–SubstrateInteraction of ABC Transporter BtuCD at the Occluded State Revealedby Molecular Dynamics Simulations http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00386/20161201/images/medium/bi-2016-00386h_0007.gif Biochemistry DOI: 10.1021/acs.biochem.6b00386 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/ugnwt-nfPl4 More...
nmrlearner Journal club 0 12-02-2016 07:45 AM
[NMR paper] Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations.
Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations. J Phys Chem B. 2014 May 15;118(19):5119-29 Authors: Hansen SK, Vestergaard M, Thøgersen L, Schiøtt B, Nielsen NC, Vosegaard T Abstract We present a method to...
nmrlearner Journal club 0 04-22-2015 03:33 PM
[NMR paper] General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations.
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations. Related Articles General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations. Biochem Biophys Res Commun. 2015 Jan 16; Authors: Liu Q, Shi C, Yu L, Zhang L, Xiong Y, Tian C Abstract Internal backbone dynamic motions are essential for different protein functions and...
nmrlearner Journal club 0 01-21-2015 08:39 PM
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations Publication date: Available online 16 January 2015 Source:Biochemical and Biophysical Research Communications</br> Author(s): Qing Liu , Chaowei Shi , Lu Yu , Longhua Zhang , Ying Xiong , Changlin Tian</br> Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and...
nmrlearner Journal club 0 01-17-2015 04:14 PM
[NMR paper] Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. Related Articles Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. J Phys Chem B. 2014 Oct 28; Authors: Allnér O, Foloppe N, Nilsson L Abstract Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory...
nmrlearner Journal club 0 10-29-2014 03:51 PM
[NMR paper] Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins. J Phys Chem B. 2013 Feb 1; Authors: Camilloni C, Cavalli A, Vendruscolo M Abstract It has been recently...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Rotational velocity rescaling of molecular dynamics trajectories for direct prediction of protein NMR relaxation
Rotational velocity rescaling of molecular dynamics trajectories for direct prediction of protein NMR relaxation July 2012 Publication year: 2012 Source:Biophysical Chemistry, Volumes 168–169</br> </br> Rotational velocity rescaling (RVR) enables 15N relaxation data for the anisotropically tumbling B3 domain of Protein G (GB3) to be accurately predicted from 1?s of constant energy molecular dynamics simulation without recourse to any system-specific adjustable parameters. Superposition of adjacent trajectory frames yields the unique rotation axis and angle of rotation...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction Abstract While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the...
nmrlearner Journal club 0 02-11-2012 10:31 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:16 AM.


Map