BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution.

Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution.

Related Articles Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution.

J Mol Biol. 2003 Mar 28;327(3):711-7

Authors: Chowdhury S, Lee MC, Xiong G, Duan Y

Here, we report a 100 ns molecular dynamics simulation of the folding process of a recently designed autonomous-folding mini-protein designated as tc5b with a new AMBER force field parameter set developed based on condensed-phase quantum mechanical calculations and a Generalized Born continuum solvent model. Starting from its fully extended conformation, our simulation has produced a final structure resembling that of NMR native structure to within 1A main-chain root mean square deviation. Remarkably, the simulated structure stayed in the native state for most part of the simulation after it reached the state. Of greater significance is that our simulation has not only reached the correct main-chain conformation, but also a very high degree of accuracy in side-chain packing conformation. This feat has traditionally been a challenge for ab initio simulation studies. In addition to characterization of the trajectory, comparison of our results to experimental data is also presented. Analysis of the trajectory suggests that the rate-limiting step of folding of this mini-protein is the packing of the Trp side-chain.

PMID: 12634063 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203686t/aop/images/medium/ja-2011-03686t_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja203686t http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-29-2011 04:45 AM
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. J Am Chem Soc. 2011 Jun 6; Authors: Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE Several all-helical single-domain proteins have been shown to fold rapidly (us timescale) to a compact...
nmrlearner Journal club 0 06-07-2011 11:05 AM
[NMR paper] Folding Trp-cage to NMR resolution native structure using a coarse-grained protein mo
Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. Related Articles Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. Biophys J. 2005 Jan;88(1):147-55 Authors: Ding F, Buldyrev SV, Dokholyan NV We develop a coarse-grained protein model with a simplified amino acid interaction potential. Using this model, we perform discrete molecular dynamics folding simulations of a small 20-residue protein--Trp-cage--from a fully extended conformation. We demonstrate the ability...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] A mini-protein designed by removing a module from barnase: molecular modeling and NMR
A mini-protein designed by removing a module from barnase: molecular modeling and NMR measurements of the conformation. Related Articles A mini-protein designed by removing a module from barnase: molecular modeling and NMR measurements of the conformation. Protein Eng. 1999 Aug;12(8):673-80 Authors: Takahashi K, Noguti T, Hojo H, Yamauchi K, Kinoshita M, Aimoto S, Ohkubo T, G? M A globular domain can be decomposed into compact modules consisting of contiguous 10-30 amino acid residues. The correlation between modules and exons observed in...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] A protein folding intermediate of ribonuclease T1 characterized at high resolution by
A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy. Related Articles A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy. J Mol Biol. 1999 Jan 15;285(2):829-42 Authors: Balbach J, Steegborn C, Schindler T, Schmid FX The rate-limiting step during the refolding of S54G/P55N ribonuclease T1 is determined by the slow trans-->cis prolyl isomerisation of Pro39. We investigated the refolding of this variant by...
nmrlearner Journal club 0 11-18-2010 07:05 PM
An introduction to NMR-based approaches for measuring protein dynamics.
An introduction to NMR-based approaches for measuring protein dynamics. An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta. 2010 Nov 5; Authors: Kleckner IR, Foster MP Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the...
nmrlearner Journal club 0 11-10-2010 02:29 PM
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution - Sec
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution - Securities Industry News (blog) (subscription) <img alt="" height="1" width="1" /> A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution Securities Industry News (blog) (subscription) In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, ... Read More
nmrlearner Online News 0 09-10-2010 12:48 AM
[NMR paper] Solid-state NMR approaches for studying membrane protein structure.
Solid-state NMR approaches for studying membrane protein structure. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--arjournals.annualreviews.org-images-AnnualReviews100x25.gif Related Articles Solid-state NMR approaches for studying membrane protein structure. Annu Rev Biophys Biomol Struct. 1992;21:25-47 Authors: Smith SO, Peersen OB
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:58 PM.


Map