Abstract A four-dimensional (4D) APSY (automated projection spectroscopy)-HBCB(CG)CDHD experiment is presented. This 4D experiment correlates aromatic with aliphatic carbon and proton resonances from the same amino acid side chain of proteins in aqueous solution. It thus allows unambiguous sequence-specific assignment of aromatic amino acid ring signals based on backbone assignments. Compared to conventional 2D approaches, the inclusion of evolution periods on 1Hβ and 13Cδ efficiently removes overlaps, and provides two additional frequencies for consequent automated or manual matching. The experiment was successfully applied to three proteins with molecular weights from 6 to 13 kDa. For the complementation of the assignment of the aromatic resonances, TOCSY- or COSY-based versions of a 4D APSY-HCCHaro sequence are proposed.
Content Type Journal Article
Category Article
Pages 1-6
DOI 10.1007/s10858-011-9572-7
Authors
Barbara Krähenbühl, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
Sebastian Hiller, Biozentrum, University of Basel, 4056 Basel, Switzerland
Gerhard Wider, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
J Biomol NMR. 2010 Dec 18;
Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P
We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner
Journal club
0
12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner
Journal club
0
12-21-2010 02:14 AM
[NMR paper] NMR assignment of protein side chains using residue-correlated labeling and NOE spect
NMR assignment of protein side chains using residue-correlated labeling and NOE spectra.
Related Articles NMR assignment of protein side chains using residue-correlated labeling and NOE spectra.
J Magn Reson. 2003 Dec;165(2):237-47
Authors: Mueller GA, Kirby TW, DeRose EF, London RE
A new approach for the isotopic labeling of proteins is proposed that aims to facilitate side chain resonance assignments. Residue-correlated (RC) labeling is achieved by the expression of a protein on a medium containing a mixture of labeled, e.g., amino acids,...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMRwiki tweet] nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.n
nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.nmrwiki.org/question/199/
nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.nmrwiki.org/question/199/
Source: NMRWiki tweets
nmrlearner
Twitter NMR
0
11-18-2010 06:16 PM
[NMR paper] Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets po
Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains.
Related Articles Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains.
Biochem Cell Biol. 1998;76(2-3):379-90
Authors: Slupsky CM, Gentile LN, McIntosh LP
The measurement of interproton nuclear Overhauser enhancements (NOEs) and dihedral angle restraints of aromatic amino acids is a critical step towards determining the structure of a protein. The complete assignment of the resonances from aromatic...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain
Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment.
Related Articles Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment.
J Chem Inf Comput Sci. 1997 May-Jun;37(3):467-77
Authors: Li KB, Sanctuary BC
A sequential assignment protocol for proteins was developed using heteronuclear 3D NMR. The protocol consists of an amino acid type recognition algorithm and a primary sequence mapping algorithm. The former measures...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain
Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment.
Related Articles Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment.
J Chem Inf Comput Sci. 1997 May-Jun;37(3):467-77
Authors: Li KB, Sanctuary BC
A sequential assignment protocol for proteins was developed using heteronuclear 3D NMR. The protocol consists of an amino acid type recognition algorithm and a primary sequence mapping algorithm. The former measures...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D -NOESY
Francesco Fiorito, Torsten Herrmann, Fred F. Damberger and Kurt Wüthrich
Journal of Biomolecular NMR; 2008; 42(1); pp 23-33
Abstract
ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of 1HN, 15N, 13Cα, 13Cβ and possibly 1Hα from the previous polypeptide backbone assignment, and one or several 3D 13C- or 15N-resolved -NOESY spectra. ASCAN has also been...