BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-10-2012, 01:48 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,780
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 3D-TROSY-based backbone and ILV-methyl resonance assignments of a 319-residue homodimer from a single protein sample

3D-TROSY-based backbone and ILV-methyl resonance assignments of a 319-residue homodimer from a single protein sample


Abstract The feasibility of practically complete backbone and ILV methyl chemical shift assignments from a single [U-2H,15N,13C; Ileδ1-{13CH3}; Leu,Val-{13CH3/12CD3}]-labeled protein sample of the truncated form of ligand-free Bst-Tyrosyl tRNA Synthetase (Bst-Î?YRS), a 319-residue predominantly helical homodimer, is established. Protonation of ILV residues at methyl positions does not appreciably detract from the quality of TROSY triple resonance data. The assignments are performed at 40 °C to improve the sensitivity of the measurements and alleviate the overlap of 1Hâ??15N correlations in the abundant α-helical segments of the protein. A number of auxiliary approaches are used to assist in the assignment process: (1) selection of 1Hâ??15N amide correlations of certain residue types (Ala, Thr/Ser) that simplifies 2D 1Hâ??15N TROSY spectra, (2) straightforward identification of ILV residue types from the methyl-detected â??out-and-backâ?? HMCM(CG)CBCA experiment, and (3) strong sequential HNâ??HN NOE connectivities in the helical regions. The two subunits of Bst-YRS were predicted earlier to exist in two different conformations in the absence of ligands. In agreement with our earlier findings (Godoy-Ruiz in J Am Chem Soc 133:19578â??195781, 2011), no evidence of dimer asymmetry has been observed in either amide- or methyl-detected experiments.
  • Content Type Journal Article
  • Category Communication
  • Pages 1-9
  • DOI 10.1007/s10858-012-9667-9
  • Authors
    • Anna Krejcirikova, Department of Chemistry and Biochemistry, University of Maryland, Biomolecular Sci. Bldg./CBSO, College Park, MD 20742, USA
    • Vitali Tugarinov, Department of Chemistry and Biochemistry, University of Maryland, Biomolecular Sci. Bldg./CBSO, College Park, MD 20742, USA

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Backbone and Ile-?1, Leu, Val Methyl (1)H, (13)C and (15)N NMR chemical shift assignments for human interferon-stimulated gene 15 protein.
Backbone and Ile-?1, Leu, Val Methyl (1)H, (13)C and (15)N NMR chemical shift assignments for human interferon-stimulated gene 15 protein. Backbone and Ile-?1, Leu, Val Methyl (1)H, (13)C and (15)N NMR chemical shift assignments for human interferon-stimulated gene 15 protein. Biomol NMR Assign. 2011 May 5; Authors: Yin C, Aramini JM, Ma LC, Cort JR, Swapna GV, Krug RM, Montelione GT Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing...
nmrlearner Journal club 0 05-06-2011 12:02 PM
[NMR paper] NMR structures of three single-residue variants of the human prion protein.
NMR structures of three single-residue variants of the human prion protein. Related Articles NMR structures of three single-residue variants of the human prion protein. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8340-5 Authors: Calzolai L, Lysek DA, Guntert P, von Schroetter C, Riek R, Zahn R, Wüthrich K The NMR structures of three single-amino acid variants of the C-terminal domain of the human prion protein, hPrP(121-230), are presented. In hPrP(M166V) and hPrP(R220K) the substitution is with the corresponding residue in murine PrP, and in...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Protein dynamics measurements by TROSY-based NMR experiments.
Protein dynamics measurements by TROSY-based NMR experiments. Related Articles Protein dynamics measurements by TROSY-based NMR experiments. J Magn Reson. 2000 Apr;143(2):423-6 Authors: Zhu G, Xia Y, Nicholson LK, Sze KH The described TROSY-based experiments for investigating backbone dynamics of proteins make it possible to elucidate internal motions in large proteins via measurements of T(1), T(2), and NOE of backbone (15)N nuclei. In our proposed sequences, the INEPT sequence is eliminated and the PEP sequence is replaced by the ST2-PT...
nmrlearner Journal club 0 11-18-2010 09:15 PM
High-resolution methyl edited GFT NMR experiments for protein resonance assignments a
High-resolution methyl edited GFT NMR experiments for protein resonance assignments and structure determination Abstract Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of 13C and 1H chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing...
nmrlearner Journal club 0 09-18-2010 04:53 AM
High-resolution methyl edited GFT NMR experiments for protein resonance assignments a
High-resolution methyl edited GFT NMR experiments for protein resonance assignments and structure determination. Related Articles High-resolution methyl edited GFT NMR experiments for protein resonance assignments and structure determination. J Biomol NMR. 2010 Sep 14; Authors: Jaipuria G, Thakur A, D'Silva P, Atreya HS Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile,...
nmrlearner Journal club 0 09-15-2010 02:26 PM
[NMR paper] 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue p
1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus. Related Articles 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus. J Biomol NMR. 1994 Mar;4(2):257-78 Authors: Remerowski ML, Domke T, Groenewegen A, Pepermans HA, Hilbers CW, van de Ven FJ 1H, 13C and 15N NMR assignments of the backbone atoms of subtilisin 309, secreted by Bacillus lentus, have been made using heteronuclear 3D NMR...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue p
1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus. Related Articles 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus. J Biomol NMR. 1994 Mar;4(2):257-78 Authors: Remerowski ML, Domke T, Groenewegen A, Pepermans HA, Hilbers CW, van de Ven FJ 1H, 13C and 15N NMR assignments of the backbone atoms of subtilisin 309, secreted by Bacillus lentus, have been made using heteronuclear 3D NMR...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Solid-state NMR triple-resonance backbone assignments in a protein.
Solid-state NMR triple-resonance backbone assignments in a protein. Related Articles Solid-state NMR triple-resonance backbone assignments in a protein. J Biomol NMR. 1999 Apr;13(4):337-42 Authors: Tan WM, Gu Z, Zeri AC, Opella SJ Triple-resonance solid-state NMR spectroscopy is demonstrated to sequentially assign the 13C' and 15N amide backbone resonances of adjacent residues in an oriented protein sample. The observed 13C' chemical shift frequency provides an orientational constraint complementary to those measured from the 1H and 15N amide...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:58 PM.


Map