Related ArticlesA 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles.
Biochim Biophys Acta. 1992 Feb 17;1104(1):137-46
Authors: Tauskela JS, Thompson M
The motional properties of the inner and outer monolayer headgroups of egg phosphatidylcholine (PC) small unilamellar vesicles (SUV) were investigated by 31P-NMR temperature-dependent spin-lattice relaxation time constant (T1) and 31P[1H] nuclear Overhauser effect (NOE) analyses. Three different aspects of the dynamics of PC headgroups were investigated using the T1 analysis. First, differences in the dynamics of the headgroup region of both surfaces of the SUV were measured after application of a chemical shift reagent, PrCl3, to either the extra- or intravesicular volumes. Second, the ability of the T1 experiment to resolve the different motional states was evaluated in the absence of shift reagent. Third, comparison between correlation times obtained from a resonance frequency dependent 31P[1H] NOE analysis allowed a determination of the applicability of a simplified motional model to describe phosphorus dipolar relaxation. Temperature-dependent 31P-NMR T1 values obtained for the individual monolayers at 81.0 and 162.0 MHz were modelled assuming that phosphorus undergoes both a dipolar and an anisotropic chemical shielding relaxation mechanism, each being described by the same correlation time, tau. At 162.0 MHz, the position of the T1 minimum for the inner monolayer was 9 degrees higher than that of the outer region, indicating a higher level of motional restriction for the inner leaflet, in agreement with 31P[1H] NOE measurements. The 162.0 MHz T1 profile of the combined SUV monolayers exhibited a smooth minimum located at the midpoint of the monolayer minima positions, effectively masking the presence of the individual surfaces. 31P[1H] NOE results obtained at 32.3, 81.0 and 162.0 MHz did not agree with those predicted from a simple dipolar relaxation model. These results suggest a T1-temperature method can neither discriminate two or more closely related motional time scales in a heterogeneous environment (such as incorporation of protein into lipid bilayers) nor allow accurate determination of the correlation time at the position of the minimum when the dipolar relaxation rate makes a significant contribution to the overall rate.
[NMR paper] An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement an
An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
Related Articles An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
J Magn Reson. 2004 Dec;171(2):225-32
Authors: Prosser RS, Luchette PA
Due to its depth-dependent solubility, oxygen exerts paramagnetic effects which become progressively greater toward the hydrophobic interior of micelles, and lipid bilayer membranes. This paramagnetic gradient, which is manifested...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Publication year: 2010
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 November 2010</br>
Galina, Diakova , Yanina, Goddard , Jean-Pierre, Korb , Robert G., Bryant</br>
The paramagnetic contributions to water proton spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to...
nmrlearner
Journal club
0
11-11-2010 04:33 PM
[NMR paper] Transferred nuclear Overhauser effect study of the C-terminal helix of yeast phosphog
Transferred nuclear Overhauser effect study of the C-terminal helix of yeast phosphoglycerate kinase: NMR solution structure of the C-terminal bound peptide.
Related Articles Transferred nuclear Overhauser effect study of the C-terminal helix of yeast phosphoglycerate kinase: NMR solution structure of the C-terminal bound peptide.
Biochemistry. 1995 Jan 24;34(3):842-6
Authors: Andrieux M, Leroy E, Guittet E, Ritco-Vonsovici M, Mouratou B, Minard P, Desmadril M, Yon JM
Two-dimensional 1H nuclear magnetic resonance spectroscopy is used to...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
J Magn Reson B. 1994 May;104(1):11-25
Authors: Kuwata K, Brooks D, Yang H, Schleich T
The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
J Magn Reson B. 1994 May;104(1):11-25
Authors: Kuwata K, Brooks D, Yang H, Schleich T
The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabo
Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
Related Articles Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
Biochemistry. 1990 Aug 21;29(33):7547-57
Authors: Caines GH, Schleich T, Morgan CF, Farnsworth PN
The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of...