BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-25-2018, 06:02 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 3-O-Methyl- d -glucose mutarotation and proton exchange rates assessed by 13 C, 1 H NMR and by chemical exchange saturation transfer and spin lock measurements

3-O-Methyl- d -glucose mutarotation and proton exchange rates assessed by 13 C, 1 H NMR and by chemical exchange saturation transfer and spin lock measurements

Abstract

3-O-Methyl-d-glucose (3OMG) was recently suggested as an agent to image tumors using chemical exchange saturation transfer (CEST) MRI. To characterize the properties of 3OMG in solution, the anomeric equilibrium and the mutarotation rates of 3OMG were studied by 1H and 13C NMR. This information is essential in designing the in vivo CEST experiments. At room temperature, the ratio of α and β 3OMG anomers at equilibrium was 1:1.4, and the time to reach 95% equilibrium was 6Â*h. The chemical exchange rates between the hydroxyl protons of 3OMG and water, measured by CEST and spin lock at pH 6.14 and a temperature of 4Â*°C, were in the range of 360â??670Â*sâ??1.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer
Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer Abstract Although Chemical Exchange Saturation Transfer (CEST) type NMR experiments have been used to study chemical exchange processes in molecules since the early 1960s, there has been renewed interest in the past several years in using this approach to study biomolecular conformational dynamics. The methodology is particularly powerful for the study of sparsely populated, transiently formed conformers that are recalcitrant to investigation using...
nmrlearner Journal club 0 03-19-2017 10:38 PM
[NMR paper] Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes.
Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes. Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes. J Vis Exp. 2016 Nov 12;(117): Authors: Quirós MT, Macdonald C, Angulo J, Muñoz MP Abstract This detailed protocol describes the new Spin Saturation Transfer Difference Nuclear Magnetic Resonance protocol (SSTD NMR), recently developed in our group to study processes of mutual-site...
nmrlearner Journal club 0 12-04-2016 02:24 AM
[U. of Ottawa NMR Facility Blog] CEST - Chemical Exchange Saturation Transfer
CEST - Chemical Exchange Saturation Transfer Chemical Exchange Saturation Transfer (CEST) is a technique where one resonance, in slow exchange with a second resonance, is saturated with a selective low power pulse followed by a hard non-selective 90° pulse. The intensity of the second resonance is then diminished due to the transfer of saturation from the first resonance as the result of chemical exchange. The figure below demonstrates this for a 25 mM solution of salicylic acid in H2O/D2O buffered at pH 7. ...
nmrlearner News from NMR blogs 0 04-22-2016 08:45 PM
[NMR paper] Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer.
Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer. Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer. Phys Chem Chem Phys. 2016 Mar 22; Authors: Ma RS, Li QF, Wang AD, Zhang JH, Liu ZJ, Wu JH, Su XC, Ruan K Abstract Despite the critical roles of excited states in protein functions, they remain intractable for most structural studies because of their notably low populations. Chemical shifts for...
nmrlearner Journal club 0 03-24-2016 04:30 PM
[NMR paper] Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data.
Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data. Related Articles Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data. Angew Chem Int Ed Engl. 2016 Jan 28; Authors: Gu Y, Hansen AL, Peng Y, Brüschweiler R Abstract Functional motions of (15) N-labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per...
nmrlearner Journal club 0 01-30-2016 09:13 PM
[NMR paper] Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR.
Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--link.aip.org-jhtml-linkto.gif Related Articles Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR. J Chem Phys. 2014 Feb 28;140(8):084203 ...
nmrlearner Journal club 0 03-05-2014 11:57 PM
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy Bo Zhao, Alexandar L. Hansen and Qi Zhang http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja409835y/aop/images/medium/ja-2013-09835y_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja409835y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/iu74AOgzY6s
nmrlearner Journal club 0 12-19-2013 05:34 AM
[NMR paper] Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy. Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy. Angew Chem Int Ed Engl. 2013 Feb 28; Authors: Vallurupalli P, Kay LE Abstract Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical...
nmrlearner Journal club 0 03-02-2013 11:45 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:14 PM.


Map