[NMR paper] (2S,4R)- and (2S,4S)-perfluoro-tert-butyl 4-hydroxyproline: two conformationally distinct proline amino acids for sensitive application in 19F NMR.
Related Articles(2S,4R)- and (2S,4S)-perfluoro-tert-butyl 4-hydroxyproline: two conformationally distinct proline amino acids for sensitive application in 19F NMR.
J Org Chem. 2014 Jun 20;79(12):5880-6
Authors: Tressler CM, Zondlo NJ
Abstract
(2S,4R)- and (2S,4S)-perfluoro-tert-butyl 4-hydroxyproline were synthesized (as Fmoc-, Boc-, and free amino acids) in 2-5 steps. The key step of each synthesis was a Mitsunobu reaction with perfluoro-tert-butanol, which incorporated a perfluoro-tert-butyl group, with nine chemically equivalent fluorines. Both amino acids were incorporated in model ?-helical and polyproline helix peptides. Each amino acid exhibited distinct conformational preferences, with (2S,4R)-perfluoro-tert-butyl 4-hydroxyproline promoting polyproline helix. Peptides containing these amino acids were sensitively detected by (19)F NMR, suggesting their use in probes and medicinal chemistry.
[NMR paper] Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions.
Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions.
Related Articles Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions.
ACS Chem Biol. 2014 Oct 7;
Authors: Mishra NK, Urick AK, Ember S, Schonbrunn E, Pomerantz WC
Abstract
We describe a 19F NMR method for detecting bromodomain-ligand interactions using fluorine-labeled aromatic amino acids due to the conservation of aromatic residues in the bromodomain binding site. We test the...
nmrlearner
Journal club
0
10-08-2014 05:52 PM
15N-permethylated amino acids as efficient probes for MRI-DNP applications
From The DNP-NMR Blog:
15N-permethylated amino acids as efficient probes for MRI-DNP applications
Chiavazza, E., et al., 15N-permethylated amino acids as efficient probes for MRI-DNP applications. Contrast Media Mol Imaging, 2013. 8(5): p. 417-21.
http://www.ncbi.nlm.nih.gov/pubmed/23740812
nmrlearner
News from NMR blogs
0
02-21-2014 08:51 PM
[NMR paper] Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins.
Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins.
Related Articles Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins.
Top Curr Chem. 2013 May 14;
Authors: Kuhn LT
Abstract
Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in...
nmrlearner
Journal club
0
05-15-2013 03:12 PM
[NMR paper] Perfluoro-tert-butyl-homoserine as a sensitive (19) F NMR reporter for peptide-membrane interactions in solution.
Perfluoro-tert-butyl-homoserine as a sensitive (19) F NMR reporter for peptide-membrane interactions in solution.
Related Articles Perfluoro-tert-butyl-homoserine as a sensitive (19) F NMR reporter for peptide-membrane interactions in solution.
J Pept Sci. 2013 Mar 19;
Authors: Buer BC, Levin BJ, Marsh EN
Abstract
Fluorine ((19) F) NMR is a valuable tool for studying dynamic biological processes. However, increasing the sensitivity of fluorinated reporter molecules is a key to reducing acquisition times and accessing transient...
nmrlearner
Journal club
0
03-20-2013 01:47 PM
[Question from NMRWiki Q&A forum] 13C quaternary centers in amino acids
13C quaternary centers in amino acids
I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxylic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heard the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time.
Check if somebody has answered this question on NMRWiki QA forum
nmrlearner
News from other NMR forums
0
09-01-2011 07:20 AM
[Question from NMRWiki Q&A forum] 13C cuaternary centers in amino acids
13C cuaternary centers in amino acids
I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxilic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heart the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time
Check if somebody has answered this question on NMRWiki QA forum
nmrlearner
News from other NMR forums
0
08-31-2011 07:12 PM
[KPWU blog] Names of Atoms of Amino acids
Names of Atoms of Amino acids
I really hate the inconsistent nomenclature of atoms of amino acids between different programs/database. I finished all NOESY assignment on Sparky using PDB nomenclature and the Sparky XPLOR constraint plugin (shortcut xf) doesn’t take care of the differences between XPLOR and PDB. Thus I have to find a table showing me the differences of names http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=262&subd=kpwu&ref=&feed=1
Go to KPWU blog to read complete post.
nmrlearner
News from NMR blogs
0
01-28-2011 04:52 AM
[NMR paper] Comparison between the phi distribution of the amino acids in the protein database an
Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation.
J Mol Biol. 1995 Nov 24;254(2):322-33
Authors: Serrano L
...