A suite of (2)H-based spin relaxation NMR experiments is presented for the measurement of molecular dynamics in a site-specific manner in uniformly (13)C, randomly fractionally deuterated ( approximately 50%) RNA molecules. The experiments quantify (2)H R(1) and R(2) relaxation rates that can subsequently be analyzed to obtain information about dynamics on a pico- to nanosecond time scale. Sensitivity permitting, the consistency of the data can be evaluated by measuring all five rates that are accessible for a spin 1 particle and establishing that the rates obey relations that are predicted from theory. The utility of the methodology is demonstrated with studies of the dynamics of a 14-mer RNA containing the UUCG tetraloop at temperatures of 25 and 5 degrees C. The high quality of the data, even at 5 degrees C, suggests that the experiments will be of use for the study of RNA molecules that are as large as 30 nucleotides.
Did you find this post helpful? |
Similar Threads
Thread
Thread Starter
Forum
Replies
Last Post
Water proton spin saturation affects measured protein backboneN spin relaxation rates
Water proton spin saturation affects measured protein backboneN spin relaxation rates
Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 1 October 2011</br>
Kang*Chen, Nico*Tjandra</br>
Protein backboneN NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses....
nmrlearner
Journal club
0
10-02-2011 08:25 AM
Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation
Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation
Abstract We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with 15N R 1, R 1Ï? , and {1H}-15N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies...
Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions.
Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions.
Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions.
Angew Chem Int Ed Engl. 2011 Mar 18;
Authors: Salmon L, Ortega Roldan JL, Lescop E, Licinio A, van Nuland N, Jensen MR, Blackledge M
nmrlearner
Journal club
0
03-23-2011 05:41 PM
A Practical Guide to Protein Dynamics From 15N Spin Relaxation in Solution
A Practical Guide to Protein Dynamics From 15N Spin Relaxation in Solution
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 7 January 2011</br>
S. Bastien, Morin</br>
More...
[NMR paper] Side chain dynamics in unfolded protein states: an NMR based 2H spin relaxation study
Side chain dynamics in unfolded protein states: an NMR based 2H spin relaxation study of delta131delta.
Related Articles Side chain dynamics in unfolded protein states: an NMR based 2H spin relaxation study of delta131delta.
J Am Chem Soc. 2003 Feb 19;125(7):1748-58
Authors: Choy WY, Shortle D, Kay LE
NMR relaxation data on disordered proteins can provide insight into both structural and dynamic properties of these molecules. Because of chemical shift degeneracy in correlation spectra, detailed site-specific analyses of side chain dynamics...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic bindi
19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin.
Related Articles 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin.
Biochemistry. 1992 Aug 11;31(31):7069-76
Authors: Dubois BW, Evers AS
This paper characterizes the low-affinity ligand binding interactions of a fluorinated volatile anesthetic, isoflurane (CHF2OCHClCF3), with bovine serum albumin...