BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-03-2017, 03:18 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 2 Hâ?? 13 C correlation solid-state NMR for investigating dynamics and water accessibilities of proteins and carbohydrates

2 Hâ?? 13 C correlation solid-state NMR for investigating dynamics and water accessibilities of proteins and carbohydrates

Abstract

Site-specific determination of molecular motion and water accessibility by indirect detection of 2H NMR spectra has advantages over dipolar-coupling based techniques due to the large quadrupolar couplings and the ensuing high angular resolution. Recently, a Rotor Echo Short Pulse IRrAdiaTION mediated cross polarization (RESPIRATIONCP) technique was developed, which allowed efficient transfer of 2H magnetization to 13C at moderate 2H radiofrequency field strengths available on most commercial MAS probes. In this work, we investigate the 2Hâ??13C magnetization transfer characteristics of one-bond perdeuterated CD n spin systems and two-bond H/D exchanged Câ??(O)â??D and Câ??(N)â??D spin systems in carbohydrates and proteins. Our results show that multi-bond, broadband 2Hâ??13C polarization transfer can be achieved using 2H radiofrequency fields of ~50Â*kHz, relatively short contact times of 1.3â??1.7Â*ms, and with sufficiently high sensitivity to enable 2D 2Hâ??13C correlation experiments with undistorted 2H spectra in the indirect dimension. To demonstrate the utility of this 2Hâ??13C technique for studying molecular motion, we show 2Hâ??13C correlation spectra of perdeuterated bacterial cellulose, whose surface glucan chains exhibit a motionally averaged C6 2H quadrupolar coupling that indicates fast trans-gauche isomerization about the C5â??C6 bond. In comparison, the interior chains in the microfibril core are fully immobilized. Application of the 2Hâ??13C correlation experiment to H/D exchanged Arabidopsis primary cell walls show that the Oâ??D quadrupolar spectra of the highest polysaccharide peaks can be fit to a two-component model, in which 74% of the spectral intensity, assigned to cellulose, has a near-rigid-limit coupling, while 26% of the intensity, assigned to matrix polysaccharides, has a weakened coupling of 50Â*kHz. The latter Oâ??D quadrupolar order parameter of 0.22 is significantly smaller than previously reported Câ??D dipolar order parameters of 0.46â??0.55 for pectins, suggesting that additional motions exist at the Câ??O bonds in the wall polysaccharides. 2Hâ??13C polarization transfer profiles are also compared between statistically deuterated and H/D exchanged GB1.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Water Distribution, Dynamics and Interactions with Alzheimer's ?-Amyloid Fibrils Investigated by Solid-State NMR.
Water Distribution, Dynamics and Interactions with Alzheimer's ?-Amyloid Fibrils Investigated by Solid-State NMR. Water Distribution, Dynamics and Interactions with Alzheimer's ?-Amyloid Fibrils Investigated by Solid-State NMR. J Am Chem Soc. 2017 Apr 13;: Authors: Wang T, Jo H, DeGrado WF, Hong M Abstract Water is essential for protein folding and assembly of amyloid fibrils. Internal water cavities have been proposed for several amyloid fibrils, but no direct structural and dynamical data have been reported on the water...
nmrlearner Journal club 0 04-14-2017 10:27 AM
Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance
From The DNP-NMR Blog: Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance Takahashi, H., S. Hediger, and G. De Paepe, Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance. Chem Commun (Camb), 2013. 49(82): p. 9479-81. http://www.ncbi.nlm.nih.gov/pubmed/24013616
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
[NMR paper] Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance.
Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance. Matrix-free dynamic nuclear polarization enables solid-state NMR (13)C-(13)C correlation spectroscopy of proteins at natural isotopic abundance. Chem Commun (Camb). 2013 Sep 6; Authors: Takahashi H, Hediger S, De Paëpe G Abstract We introduce a general approach for dynamic nuclear polarization (DNP) enhanced solid-state NMR that overcomes the current problems in DNP experiments caused by the use...
nmrlearner Journal club 0 09-10-2013 08:44 PM
[NMR paper] Water scaffolding in collagen: Implications on protein dynamics as revealed by solid-state NMR.
Water scaffolding in collagen: Implications on protein dynamics as revealed by solid-state NMR. Water scaffolding in collagen: Implications on protein dynamics as revealed by solid-state NMR. Biopolymers. 2013 Jun 19; Authors: Aliev AE, Courtier-Murias D Abstract Solid-state NMR studies of collagen samples of various origin confirm that the amplitude of collagen backbone and sidechain motions increases significantly on increasing the water content. This conclusion is supported by the changes observed in three different NMR...
nmrlearner Journal club 0 06-21-2013 01:10 PM
[NMR paper] Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure.
Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure. Related Articles Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure. J Biomol Struct Dyn. 2013 Jun 3; Authors: Mahajan S, de Brevern AG, Offmann B, Srinivasan N Abstract Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational...
nmrlearner Journal club 0 06-05-2013 06:53 PM
Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra
Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra Abstract We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH...
nmrlearner Journal club 0 11-29-2012 03:14 AM
Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins
Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins Abstract Well-resolved 2Hâ??13C correlation spectra, reminiscent of 1Hâ??13C correlations, are obtained for perdeuterated ubiquitin and for perdeuterated outer-membrane protein G (OmpG) from E. coli by exploiting the favorable lifetime of 2H double-quantum (DQ) states. Sufficient signal-to-noise was achieved due to the short deuterium T 1, allowing for high repetition rates and enabling 3D experiments with a 2Hâ??13C transfer step in a reasonable time....
nmrlearner Journal club 0 11-01-2011 01:52 AM
High Resolution 1H Detected 1H,13C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective 1H,2H Isotopic Labeling of Methyl Groups
High Resolution <SUP>1</SUP>H Detected <SUP>1</SUP>H,<SUP>13</SUP>C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective <SUP>1</SUP>H,<SUP>2</SUP>H Isotopic Labeling of Methyl Groups Vipin Agarwal, Anne Diehl, Nikolai Skrynnikov, and Bernd Reif J. Am. Chem. Soc.; 2006; 128(39) pp 12620 - 12621; Abstract: MAS solid-state NMR experiments applied to biological solids are still hampered by low sensitivity and resolution. In this work, we employ a deuteration scheme in which individual methyl groups are selectively protonated. This labeling scheme...
administrator Solid-state high-res. NMR 1 08-05-2009 03:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:00 AM.


Map