BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 1H-NMR study of reduced heme proteins myoglobin and cytochrome P450.

1H-NMR study of reduced heme proteins myoglobin and cytochrome P450.

Related Articles 1H-NMR study of reduced heme proteins myoglobin and cytochrome P450.

Eur J Biochem. 1993 Jul 15;215(2):431-7

Authors: Banci L, Bertini I, Marconi S, Pierattelli R

The 1H-NMR spectra of deoxymyoglobin and reduced cytochrome P450 are analyzed by NOE spectroscopy. Progress has been made in the assignment of the hyperfine-shifted signals of deoxymyoglobin. The nuclear longitudinal-relaxation-time values indicate short electron-relaxation times whereas Curie relaxation contributes significantly to the signals linewidths. For reduced cytochrome P450 the linewidths are larger due to the Curie-relaxation contribution in a large protein. Therefore, the spectral information is poor. The electron-relaxation rates are discussed in terms of possible electronic structure.

PMID: 8344310 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin.
Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin. Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin. Biochim Biophys Acta. 2011 May 6; Authors: Juillard S, Chevance S, Bondon A, Simonneaux G The asymmetric 3-ethyl-2-methylporphyrin iron complex was synthetized and inserted into apomyoglobin. UV-visible spectroscopic studies demonstrated the capacity of iron to coordinate different exogenous axial ligands in ferrous and...
nmrlearner Journal club 0 05-24-2011 12:00 PM
[NMR paper] 1H NMR structure of the heme pocket of HNO-myoglobin.
1H NMR structure of the heme pocket of HNO-myoglobin. Related Articles 1H NMR structure of the heme pocket of HNO-myoglobin. J Biol Inorg Chem. 2003 Feb;8(3):348-52 Authors: Sulc F, Fleischer E, Farmer PJ, Ma D, La Mar GN The unique (1)H NMR signal of nitrosyl hydride at 14.8 ppm is used to obtain a solution structure of the distal pocket of Mb-HNO, a rare nitroxyl adduct with a half-life of several months at room temperature. (1)H NMR, NOESY and TOCSY data were obtained under identical experimental conditions on solutions of the diamagnetic...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] 1H NMR Study of the Reduced Cytochrome c' from Rhodopseudomonas palustris Containing
1H NMR Study of the Reduced Cytochrome c' from Rhodopseudomonas palustris Containing a High-Spin Iron(II) Heme Moiety. Related Articles 1H NMR Study of the Reduced Cytochrome c' from Rhodopseudomonas palustris Containing a High-Spin Iron(II) Heme Moiety. Inorg Chem. 1998 Sep 21;37(19):4814-4821 Authors: Bertini I, Dikiy A, Luchinat C, Macinai R, Viezzoli MS The assignment of the hyperfine shifted signals of the reduced cytochrome c' from Rhodopseudomonas palustris has been obtained through saturation transfer experiments with assigned signals...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] The substrate binding site of human liver cytochrome P450 2C9: an NMR study.
The substrate binding site of human liver cytochrome P450 2C9: an NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The substrate binding site of human liver cytochrome P450 2C9: an NMR study. Biochemistry. 1997 Oct 21;36(42):12672-82 Authors: Poli-Scaife S, Attias R, Dansette PM, Mansuy D Purified recombinant human liver cytochrome P450 2C9 was produced, from expression of the corresponding cDNA in yeast, in quantities large enough for UV-visible and 1H NMR experiments. Its...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of s
A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding. Biochemistry. 1996 Apr 9;35(14):4540-50 Authors: Modi S, Paine MJ, Sutcliffe MJ, Lian LY, Primrose WU, Wolf CR, Roberts GC The cytochrome P450 responsible for the debrisoquine/sparteine polymorphism (P450 2D6) has been produced in large...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket st
1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5. Related Articles 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5. Biochemistry. 1991 Feb 19;30(7):1878-87 Authors: Lee KB, La Mar GN, Pandey RK, Rezzano IN, Mansfield KE, Smith KM 1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] Characterization by NMR of the heme-myoglobin adduct formed during the reductive meta
Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group. Related Articles Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group. J Biol Chem. 1991 Feb 15;266(5):3208-14 Authors: Osawa Y, Highet RJ, Bax A, Pohl LR The reductive debromination of BrCCl3 by ferrous deoxymyoglobin leads to the covalent bonding of the...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorh
1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus. Eur J Biochem. 1990 May 20;189(3):567-73 Authors: Yamamoto Y, Inoue Y, Chûjô R, Suzuki T Time-dependent NOE studies of the C13(1) and C17(1) methylene proton resonances of the heme...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:32 PM.


Map