BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 1H-NMR study of the mechanism of assembly and equilibrium heme orientation of sperm w

1H-NMR study of the mechanism of assembly and equilibrium heme orientation of sperm whale myoglobin reconstituted with protohemin type-isomers.

Related Articles 1H-NMR study of the mechanism of assembly and equilibrium heme orientation of sperm whale myoglobin reconstituted with protohemin type-isomers.

Biochim Biophys Acta. 1990 Nov 15;1041(2):186-94

Authors: Hauksson JB, La Mar GN, Pande U, Pandey RK, Parish DW, Singh JP, Smith KM

The products of the incorporation of various protohemin type-isomers into the heme pocket of sperm whale myoglobin were investigated by 1H-NMR in the met-cyano complexes, both immediately after reconstitution as well as at equilibrium. The type-isomers studied include those involving all possible interchanges of the two substituents on a given pyrrole. The protohemin-III and -XIII isomers, with true 2-fold symmetry, yielded only homogeneous products. Protohemins-XI, -XIV both exhibited two species after reconstitution, with one disappearing with time. Protohemin-I was the only asymmetric hemin that failed to exhibit two isomers initially. The orientation of the hemin within the pocket was established by nuclear Overhauser detected dipolar connectivities among heme substituents and between heme substituents and assigned heme pocket residues. At equilibrium, the heme orientations were dominated by the asymmetric propionate rather than vinyl dispositions on the hemin, with a clear preference for placing a propionate at the 8- vs. 5-methyl position of native myoglobin. For protohemin-XI, the propionates were found in the unexpected positions of the 7-propionate and 2-vinyl groups of native myoglobin, indicating that propionates can occupy positions well within the hydrophobic interior. The alternate heme orientation for the metastable intermediates detected for protohemin-XI and -XIV involved rotational isomerism about the alpha,gamma-meso axes bisecting the vinyl positions, but these two axes are at right angles to each other in the protein matrix. The fact that protohemin-XIV, but not protohemin-I, exhibits a reversed orientation as a reconstitution intermediate provides direct evidence that vinyl contacts, as well as propionate links, modulate the relative stabilities of the initial encounter complexes between hemin and apomyoglobin. The heme cavity molecular/electronic structure was found largely unperturbed for the complexes of the various protohemin type-isomers.

PMID: 2265204 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution NMR study of DNA recognition mechanism of IRF4 protein.
Solution NMR study of DNA recognition mechanism of IRF4 protein. Related Articles Solution NMR study of DNA recognition mechanism of IRF4 protein. Nucleic Acids Symp Ser (Oxf). 2004;(48):105-6 Authors: Ishizaki I, Nomura M, Yamamoto K, Matsuyama T, Mishima M, Kojima C Transcription factor IRF-4 prefers the DNA sequence including CCGAAA. The consensus sequence of the IRF family proteins is NNGAAA, and all crystal structures indicate the NN region does not interact with IRF proteins directly. Here the sequence preference of IRF-4 was...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Two-dimensional NMR study of the heme active site structure of chloroperoxidase.
Two-dimensional NMR study of the heme active site structure of chloroperoxidase. Related Articles Two-dimensional NMR study of the heme active site structure of chloroperoxidase. J Biol Chem. 2003 Mar 7;278(10):7765-74 Authors: Wang X, Tachikawa H, Yi X, Manoj KM, Hager LP The heme active site structure of chloroperoxidase (CPO), a glycoprotein that displays versatile catalytic activities isolated from the marine mold Caldariomyces fumago, has been characterized by two-dimensional NMR spectroscopic studies. All hyperfine shifted resonances...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] A 19F-NMR study of the equilibrium unfolding of membrane-associated D-lactate dehydro
A 19F-NMR study of the equilibrium unfolding of membrane-associated D-lactate dehydrogenase of Escherichia coli. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles A 19F-NMR study of the equilibrium unfolding of membrane-associated D-lactate dehydrogenase of Escherichia coli. Biochemistry. 1996 Dec 24;35(51):16502-9 Authors: Sun ZY, Pratt EA, Simplaceanu V, Ho C Partially folded protein intermediates have been observed by 19F-NMR spectroscopy during the equilibrium unfolding of the...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Proton NMR study of the heme complex of hemopexin.
Proton NMR study of the heme complex of hemopexin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Proton NMR study of the heme complex of hemopexin. Biochim Biophys Acta. 1994 Jul 6;1200(2):161-6 Authors: Deeb RS, Muller-Eberhard U, Peyton DH Proton nuclear magnetic resonance spectroscopy of the complex of heme with hemopexin, a plasma protein with an exceptionally high affinity for heme, is reported. Characteristic spectra are shown for heme.hemopexin of cow, human,...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] 1H-NMR study of reduced heme proteins myoglobin and cytochrome P450.
1H-NMR study of reduced heme proteins myoglobin and cytochrome P450. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of reduced heme proteins myoglobin and cytochrome P450. Eur J Biochem. 1993 Jul 15;215(2):431-7 Authors: Banci L, Bertini I, Marconi S, Pierattelli R The 1H-NMR spectra of deoxymyoglobin and reduced cytochrome P450 are analyzed by NOE spectroscopy. Progress has been made in the assignment of the...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] Orientation and mobility of the heme vinyl groups in myoglobins with the aid of NOE a
Orientation and mobility of the heme vinyl groups in myoglobins with the aid of NOE and MATDUHM NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Orientation and mobility of the heme vinyl groups in myoglobins with the aid of NOE and MATDUHM NMR. Biochim Biophys Acta. 1992 Apr 8;1120(2):173-82 Authors: Yamamoto Y, Iwafune K, Nanai N, Chûjô R, Inoue Y, Suzuki T The heme vinyl substituents in a shark (Galeorhinus japonicus) myoglobin in its met-cyano form (MbCN)...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket st
1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5. Related Articles 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5. Biochemistry. 1991 Feb 19;30(7):1878-87 Authors: Lee KB, La Mar GN, Pandey RK, Rezzano IN, Mansfield KE, Smith KM 1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of...
nmrlearner Journal club 0 08-21-2010 11:16 PM
NMR post-doc position: NMR-based dynamics study of enzyme mechanism
The following post-doc position in NMR is available in University of Missouri: Ad text: """ We have an opening for a postdoctoral fellow to use NMR to study dynamics of an enzyme while it is carrying on reversible catalysis. The prospects are promising and can be compared with thorough enzymology and crystallography of its ligand-dependent conformational changes (done in our dept.). The enzyme is sizeable enough to be challenging, but we have a battery of excellent 800 MHz spectra of deuterated samples for launching the project. The postdoctoral fellow will be housed in a new...
administrator Job marketplace 0 07-14-2007 03:55 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:37 PM.


Map