Related Articles1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1.
Biochemistry. 1994 Mar 15;33(10):2838-42
Authors: Lycksell PO, Ingemarson R, Davis R, Gräslund A, Thelander L
Mouse ribonucleotide reductase consists of two nonidentical subunits, proteins R1 and R2, each inactive alone. It has earlier been shown that the carboxyl-terminal part of the R2 protein is essential for subunit association to form the active enzyme complex. We now demonstrate that protein R2 gives rise to a number of sharp 1H NMR resonances, significantly narrower than the major part of the resonances. This line narrowing of certain resonances indicates segmental mobility in the molecule. In two-dimensional 1H TOCSY spectra of protein R2, cross-peak patterns from about 25 amino acid residues are visible. Most of these were assigned to the carboxyl-terminal part of the protein by comparisons with cross-peak patterns of oligopeptides corresponding to the carboxyl terminus of mouse R2 and to the patterns of a seven amino acid residue carboxyl-terminal truncated form of protein R2. These results and the magnitude of the chemical shifts of the assigned residues demonstrate that the carboxyl-terminal part of mouse R2 protein is highly mobile compared to the rest of the protein and essentially unstructured. When protein R1 is added to a solution of protein R2, the sharp resonances are broadened, suggesting that the mobility of the carboxyl-terminal tail of protein R2 is reduced. The possibility of making direct observations of subunit interaction in native and mutagenized R1/R2 proteins should allow discrimination between effects of amino acid replacements on the catalytic mechanism and effects on subunit interaction.
[NMR paper] Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization
Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization of the FCP1-binding sites of RAP74 and human TFIIB.
Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization of the FCP1-binding sites of RAP74 and human TFIIB.
Biochemistry. 2003 Feb 18;42(6):1460-9
Authors: Nguyen BD, Chen HT, Kobor MS, Greenblatt J, Legault P, Omichinski JG
FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphorylated CTD of RNAP II. The phosphatase activity of FCP1 is...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse
1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens.
Related Articles 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens.
Biochim Biophys Acta. 2000 Mar 6;1474(1):23-30
Authors: Nakamura K, Jung YM, Era S, Sogami M, Ozaki Y, Takasaki A
In order to provide new insight into the molecular mechanism of perforating trauma-induced cataract formation in an 8-week-old ddY mouse lens, we performed an in situ investigation into changes in the water-protein and/or...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 1
1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids.
FEBS Lett. 1995 Aug 7;369(2-3):305-10
Authors: Carver JA, Esposito G, Schwedersky G, Gaestel M
The small heat-shock proteins (Hsps) exist as large aggregates and function by interacting and stabilising non-native proteins in...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal ta
1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1.
Related Articles 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1.
Biochemistry. 1994 Mar 15;33(10):2838-42
Authors: Lycksell PO, Ingemarson R, Davis R, Gräslund A, Thelander L
Mouse ribonucleotide reductase...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] 19F NMR study of the interaction of fluoride ion with ribonucleotide reductase and me
19F NMR study of the interaction of fluoride ion with ribonucleotide reductase and methane monooxygenase.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 19F NMR study of the interaction of fluoride ion with ribonucleotide reductase and methane monooxygenase.
Biochem Biophys Res Commun. 1993 Sep 15;195(2):594-9
Authors: Hamman S, Atta M, Ehrenberg A, Wilkins P, Dalton H, Béguin C, Fontecave M
The relaxation rates of fluoride, determined by 19F NMR spectroscopy, were...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit
Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit with added ligands.
Related Articles Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit with added ligands.
Biochemistry. 1993 Aug 31;32(34):8782-91
Authors: Kaufman J, Siegel LM, Spicer LD
The heme protein subunit of sulfite reductase (SiR-HP; M(r) 64,000) from Escherichia coli as isolated contains the isobacteriochlorin siroheme exchange-coupled to a cluster in the 2+ oxidation state. SiR-HP in the presence of a suitable...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] Involvement of various amino- and carboxyl-terminal residues in the active site of th
Involvement of various amino- and carboxyl-terminal residues in the active site of the histidine-containing protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus: site-directed mutagenesis with the ptsH gene, biochemical characterization and NMR studies of the mutant proteins.
Related Articles Involvement of various amino- and carboxyl-terminal residues in the active site of the histidine-containing protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus: site-directed mutagenesis with...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
[NMR paper] The carboxyl-terminal region of human interferon gamma is important for biological ac
The carboxyl-terminal region of human interferon gamma is important for biological activity: mutagenic and NMR analysis.
Related Articles The carboxyl-terminal region of human interferon gamma is important for biological activity: mutagenic and NMR analysis.
Protein Eng. 1991 Feb;4(3):335-41
Authors: Lundell D, Lunn C, Dalgarno D, Fossetta J, Greenberg R, Reim R, Grace M, Narula S
Deletion of nine amino acids from the carboxyl terminus of human IFN gamma (residues 138--146; LFRGRRASQ) resulted in a 7-fold increase in specific antiviral...