BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 1

1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids.

Related Articles 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids.

FEBS Lett. 1995 Aug 7;369(2-3):305-10

Authors: Carver JA, Esposito G, Schwedersky G, Gaestel M

The small heat-shock proteins (Hsps) exist as large aggregates and function by interacting and stabilising non-native proteins in a chaperone-like manner. Two-dimensional 1H NMR spectroscopy of mouse Hsp25 reveals that the last 18 amino acids have great flexibility with motion that is essentially independent of the domain core of the protein. The lens protein, alpha-crystallin, is homologous to Hsp25 and its two subunits also have flexible C-terminal extensions. The flexible region in Hsp25 encompasses exactly that expected from sequence comparison with alpha-crystallin implying that both proteins have similar structures and that the C-terminal extensions could be of functional importance for both proteins.

PMID: 7649277 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR spectroscopy of 14-3-3? reveals a flexible C-terminal extension. Differentiation of the chaperone and phosphoserine binding activities of 14-3-3?
NMR spectroscopy of 14-3-3? reveals a flexible C-terminal extension. Differentiation of the chaperone and phosphoserine binding activities of 14-3-3? NMR spectroscopy of 14-3-3? reveals a flexible C-terminal extension. Differentiation of the chaperone and phosphoserine binding activities of 14-3-3? Biochem J. 2011 May 10; Authors: Williams DM, Ecroyd H, Goodwin KL, Dai H, Fu H, Woodcock JM, Zhang L, Carver JA Intracellular 14-3-3 proteins bind to many proteins, via a specific phosphoserine motif, regulating diverse cellular tasks including cell...
nmrlearner Journal club 0 05-12-2011 03:40 PM
NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity.
NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity. NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity. J Biol Chem. 2011 May 3; Authors: Shin J, Chakraborty G, Bharatham N, Kang C, Tochio N, Koshiba S, Kigawa T, Kim W, Kim KT, Yoon HS Vaccinia-related kinase 1 (VRK1) is one of the mitotic kinases which play important roles in cell cycle, nuclear condensation and transcription regulation. Kinase...
nmrlearner Journal club 0 05-06-2011 12:02 PM
Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.
Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy. Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy. J Appl Toxicol. 2011 Jan 7; Authors: Tyagi R, Rana P, Khan AR, Bhatnagar D, Devi MM, Chaturvedi S, Tripathi RP, Khushu S Thallium (Tl) is a toxic heavy metal and its exposure to the human body causes physiological and biochemical changes due to its interference with potassium-dependent biological reactions. A high-resolution (1) H NMR spectroscopy based metabonomic...
nmrlearner Journal club 0 01-11-2011 11:27 PM
[NMR paper] NMR spectroscopy reveals the solution dimerization interface of p53 core domains boun
NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. Related Articles NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J Biol Chem. 2001 Dec 28;276(52):49020-7 Authors: Klein C, Planker E, Diercks T, Kessler H, Künkele KP, Lang K, Hansen S, Schwaiger M The p53 protein is a transcription factor that acts as the major tumor suppressor in mammals. The core DNA-binding domain is mutated in about 50% of all human tumors. The...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a
NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. Related Articles NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. J Mol Biol. 1999 Aug 20;291(3):661-9 Authors: Evans SP, Bycroft M In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal ta
1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1. Related Articles 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1. Biochemistry. 1994 Mar 15;33(10):2838-42 Authors: Lycksell PO, Ingemarson R, Davis R, Gräslund A, Thelander L Mouse ribonucleotide reductase...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal ta
1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1. Related Articles 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1. Biochemistry. 1994 Mar 15;33(10):2838-42 Authors: Lycksell PO, Ingemarson R, Davis R, Gräslund A, Thelander L Mouse ribonucleotide reductase...
nmrlearner Journal club 0 08-22-2010 03:33 AM
LineShapeKin Sparky Extension
LineShapeKin Sparky Extension sparky More...
nmrlearner NMR bookmarks 0 08-19-2010 02:34 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:17 PM.


Map