Related Articles1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids.
FEBS Lett. 1995 Aug 7;369(2-3):305-10
Authors: Carver JA, Esposito G, Schwedersky G, Gaestel M
The small heat-shock proteins (Hsps) exist as large aggregates and function by interacting and stabilising non-native proteins in a chaperone-like manner. Two-dimensional 1H NMR spectroscopy of mouse Hsp25 reveals that the last 18 amino acids have great flexibility with motion that is essentially independent of the domain core of the protein. The lens protein, alpha-crystallin, is homologous to Hsp25 and its two subunits also have flexible C-terminal extensions. The flexible region in Hsp25 encompasses exactly that expected from sequence comparison with alpha-crystallin implying that both proteins have similar structures and that the C-terminal extensions could be of functional importance for both proteins.
NMR spectroscopy of 14-3-3? reveals a flexible C-terminal extension. Differentiation of the chaperone and phosphoserine binding activities of 14-3-3?
NMR spectroscopy of 14-3-3? reveals a flexible C-terminal extension. Differentiation of the chaperone and phosphoserine binding activities of 14-3-3?
NMR spectroscopy of 14-3-3? reveals a flexible C-terminal extension. Differentiation of the chaperone and phosphoserine binding activities of 14-3-3?
Biochem J. 2011 May 10;
Authors: Williams DM, Ecroyd H, Goodwin KL, Dai H, Fu H, Woodcock JM, Zhang L, Carver JA
Intracellular 14-3-3 proteins bind to many proteins, via a specific phosphoserine motif, regulating diverse cellular tasks including cell...
nmrlearner
Journal club
0
05-12-2011 03:40 PM
NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity.
NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity.
NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity.
J Biol Chem. 2011 May 3;
Authors: Shin J, Chakraborty G, Bharatham N, Kang C, Tochio N, Koshiba S, Kigawa T, Kim W, Kim KT, Yoon HS
Vaccinia-related kinase 1 (VRK1) is one of the mitotic kinases which play important roles in cell cycle, nuclear condensation and transcription regulation. Kinase...
nmrlearner
Journal club
0
05-06-2011 12:02 PM
Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.
Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.
Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.
J Appl Toxicol. 2011 Jan 7;
Authors: Tyagi R, Rana P, Khan AR, Bhatnagar D, Devi MM, Chaturvedi S, Tripathi RP, Khushu S
Thallium (Tl) is a toxic heavy metal and its exposure to the human body causes physiological and biochemical changes due to its interference with potassium-dependent biological reactions. A high-resolution (1) H NMR spectroscopy based metabonomic...
nmrlearner
Journal club
0
01-11-2011 11:27 PM
[NMR paper] NMR spectroscopy reveals the solution dimerization interface of p53 core domains boun
NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA.
Related Articles NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA.
J Biol Chem. 2001 Dec 28;276(52):49020-7
Authors: Klein C, Planker E, Diercks T, Kessler H, Künkele KP, Lang K, Hansen S, Schwaiger M
The p53 protein is a transcription factor that acts as the major tumor suppressor in mammals. The core DNA-binding domain is mutated in about 50% of all human tumors. The...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a
NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
Related Articles NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
J Mol Biol. 1999 Aug 20;291(3):661-9
Authors: Evans SP, Bycroft M
In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal ta
1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1.
Related Articles 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1.
Biochemistry. 1994 Mar 15;33(10):2838-42
Authors: Lycksell PO, Ingemarson R, Davis R, Gräslund A, Thelander L
Mouse ribonucleotide reductase...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal ta
1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1.
Related Articles 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1.
Biochemistry. 1994 Mar 15;33(10):2838-42
Authors: Lycksell PO, Ingemarson R, Davis R, Gräslund A, Thelander L
Mouse ribonucleotide reductase...