BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:41 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,731
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 1H NMR investigation of the paramagnetic cluster environment in Pyrococcus furiosus t

1H NMR investigation of the paramagnetic cluster environment in Pyrococcus furiosus three-iron ferredoxin: sequence-specific assignment of ligated cysteines independent of tertiary structure.

Related Articles 1H NMR investigation of the paramagnetic cluster environment in Pyrococcus furiosus three-iron ferredoxin: sequence-specific assignment of ligated cysteines independent of tertiary structure.

Biochemistry. 1995 Jan 17;34(2):600-10

Authors: Gorst CM, Yeh YH, Teng Q, Calzolai L, Zhou ZH, Adams MW, La Mar GN

One- and two-dimensional 1H NMR data tailored to detect paramagnetically relaxed protons near the S = 1/2, three-iron-sulfur cluster of the ferredoxin from the hyperthermophile Pyrococcus furiosus are analyzed to sequence specifically assign the hyperfine shifted ligated cysteine signals, to determine the nature of the secondary structural elements on which these cysteines reside, and to define the tertiary contacts of the cluster with the remainder of the previously characterized secondary structure remote from the cluster [Teng, Q., Zhou, Z.-H., Busse, S.C., Howard, J.B., Adams, M. W. W., & La Mar, G. N. (1994) Biochemistry 33, 6316-6326]. Inspection of the geometry of the cluster ligating cysteines in the six structurally characterized cubane ferredoxin (Fd) clusters reveals a pattern of distances from the cluster iron(s) that indicate that each Cys will exhibit one backbone proton that will allow the detection of dipolar connectivities to the backbone of adjacent residues. It is expected that the first and last of the Cys in the cluster consensus binding sequence will exhibit weakly relaxed peptide NH and strongly relaxed C alpha H signals, while the two central Cys in that sequence will exhibit strongly relaxed peptide NH but weakly relaxed C alpha H peaks. These dipolar contacts are clearly observed for the three ligated Cys in 3Fe P. furiosus Fd, providing the first sequence specific assignment of ligated cysteines which do not explicitly require knowledge of the tertiary structure of the protein. This approach is proposed to have very general application to cubane ferredoxins. A combination of steady-state NOEs and short mixing time NOESY experiments demonstrate that Cys17 is on a short helix through Leu20 and that Cys56 likely initiates a type I turn, as observed in the crystal structure of the 3Fe Fd for Desulfovibrio gigas [Kissinger, C. R., Sieker, L. C., Adman, E. T., & Jensen, L. H. (1991) J. Mol. Biol. 219, 693-715]. The observed relaxation rates of resolved or partially resolved signals are shown to correlate with their proximity to the various iron in the cluster, as determined for the homologous residues in D. gigas Fd, providing additional qualitative information on tertiary contacts of the cluster.

PMID: 7819255 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
(1)H, (13)C, and (15)N NMR assignments of the Pyrococcus abyssi DNA polymerase II intein.
(1)H, (13)C, and (15)N NMR assignments of the Pyrococcus abyssi DNA polymerase II intein. (1)H, (13)C, and (15)N NMR assignments of the Pyrococcus abyssi DNA polymerase II intein. Biomol NMR Assign. 2011 Apr 26; Authors: Liu J, Du Z, Albracht CD, Naidu RO, Mills KV, Wang C Protein splicing is a precise post-translational process mediated by inteins. Inteins are intervening proteins that cleave themselves from a precursor protein while joining the flanking sequences. Here we report the (15)N, (13)C, and (1)H chemical shift assignments of the intein...
nmrlearner Journal club 0 04-27-2011 04:03 PM
[NMR paper] Solution NMR structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii.
Solution NMR structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii. Related Articles Solution NMR structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii. Protein Sci. 2003 Dec;12(12):2823-30 Authors: Aramini JM, Huang YJ, Cort JR, Goldsmith-Fischman S, Xiao R, Shih LY, Ho CK, Liu J, Rost B, Honig B, Kennedy MA, Acton TB, Montelione GT We report NMR assignments and solution structure of the 71-residue 30S ribosomal protein S28E from the archaean Pyrococcus horikoshii, target JR19 of the Northeast Structural...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Paramagnetic 1H NMR spectrum of nickel(II) pseudoazurin: investigation of the active
Paramagnetic 1H NMR spectrum of nickel(II) pseudoazurin: investigation of the active site structure and the acid and alkaline transitions. Related Articles Paramagnetic 1H NMR spectrum of nickel(II) pseudoazurin: investigation of the active site structure and the acid and alkaline transitions. Inorg Chem. 2002 Dec 16;41(25):6662-72 Authors: Dennison C, Sato K The paramagnetic (1)H NMR spectrum of Ni(II) pseudoazurin possesses a number of resonances exhibiting sizable Fermi-contact shifts. These have been assigned to protons associated with...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic p
PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic proteins. Related Articles PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic proteins. J Magn Reson. 1998 Sep;134(1):154-7 Authors: Bondon A, Mouro C A new method for NMR spectra acquisition of paramagnetic proteins is described, based on the simple use of homonuclear broadband decoupling of the diamagnetic region. Several advantages are associated with this method which was applied to one-dimensional spectra, to 1D...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Exploration of the structural environment of the iron-sulfur cluster in putidaredoxin
Exploration of the structural environment of the iron-sulfur cluster in putidaredoxin by nitrogen-15 NMR spectroscopy of selectively labeled cysteine residues. Related Articles Exploration of the structural environment of the iron-sulfur cluster in putidaredoxin by nitrogen-15 NMR spectroscopy of selectively labeled cysteine residues. Biochem Biophys Res Commun. 1998 Aug 28;249(3):773-80 Authors: Sari N, Holden MJ, Mayhew MP, Vilker VL, Coxon B Putidaredoxin is a di-iron protein whose paramagnetic region is not well characterized by 1H...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Proton NMR investigation of the [4Fe--4S]1+ cluster environment of nitrogenase iron p
Proton NMR investigation of the 1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes. Related Articles Proton NMR investigation of the 1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes. Biochemistry. 1995 Dec 5;34(48):15646-53 Authors: Lanzilotta WN, Holz RC, Seefeldt LC This work presents the complete assignment of the isotropically shifted 1H NMR resonances of Azotobacter vinelandii...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with
Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with the NMR structure of the zinc-substituted protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with the NMR structure of the zinc-substituted protein. Protein Sci. 1992...
nmrlearner Journal club 0 08-21-2010 11:45 PM
NMR study of the exchange coupling in the trinuclear cluster of the multicopper oxida
NMR study of the exchange coupling in the trinuclear cluster of the multicopper oxidase fet3p. Related Articles NMR study of the exchange coupling in the trinuclear cluster of the multicopper oxidase fet3p. J Am Chem Soc. 2010 Aug 18;132(32):11191-6 Authors: Zaballa ME, Ziegler L, Kosman DJ, Vila AJ Fet3p from Saccharomyces cerevisiae is a multicopper oxidase (MCO) which oxidizes Fe(2+) to Fe(3+). The electronic structure of the different copper centers in this family of enzymes has been extensively studied and discussed for years with a...
nmrlearner Journal club 0 08-17-2010 03:36 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:03 PM.


Map