BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:41 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 1H-NMR investigation of the oxygenation of hemoglobin in intact human red blood cells

1H-NMR investigation of the oxygenation of hemoglobin in intact human red blood cells.

Related Articles 1H-NMR investigation of the oxygenation of hemoglobin in intact human red blood cells.

Biophys J. 1995 Feb;68(2):681-93

Authors: Fetler BK, Simplaceanu V, Ho C

Using improved selective excitation methods for protein nuclear magnetic resonance (NMR), we have conducted measurements of the oxygenation of hemoglobin inside intact human red blood cells. The selective excitation methods use pulse shape-insensitive suppression of the water signal, while producing uniform phase excitation in the region of interest and, thus, are suitable for a wide variety of applications in vivo. We have measured the areas of 1H-NMR resonances of the hyperfine-shifted, exchangeable N delta H protons of the proximal histidine residues of the alpha- and beta-chains in deoxyhemoglobin (63 and 76 ppm downfield from the proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), respectively), which are sensitive to the paramagnetic state of the iron, and for which the alpha- and beta-chain resonances are resolved, and from the ring current-shifted gamma 2-CH3 protons of the distal valine residues in oxyhemoglobin (2.4 ppm upfield from DSS), which are sensitive to the conformation of the heme pocket in the oxy state. We have found that the proximal histidine resonances are directly correlated with the degree of oxygenation of hemoglobin, whereas the distal valine resonances appear to be correlated with the conformation in the heme pocket that occurs after the binding of oxygen, in both the presence and absence of 2,3-diphosphoglycerate. In addition, from the proximal histidine resonances, we have observed a preference for the binding of oxygen to the alpha-chain (up to about 10%) of hemoglobin over the beta-chain in both the presence and absence of 2,3-diphosphoglycerate. These new results obtained in intact erythrocytes are consistent with our previous 1H-NMR studies on purified human normal adult hemoglobin. A unique feature of our 1H-NMR method is the ability to monitor the binding of oxygen specifically to the alpha- and beta-chains of hemoglobin both in solution and in intact red blood cells. This information is essential to our understanding of the molecular basis for the hemoglobin molecule serving as the oxygen carrier in vertebrates.

PMID: 7696519 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
(1)H NMR study of monocrotaline and its metabolites in human blood.
(1)H NMR study of monocrotaline and its metabolites in human blood. (1)H NMR study of monocrotaline and its metabolites in human blood. Food Chem Toxicol. 2011 Aug 6; Authors: Yang YC, Crowder J, Wardle NJ, Yang L, White KN, Wang ZT, Annie Bligh SW Monocrotaline (MCT) is a naturally occurring hepatotoxic pyrrolizidine alkaloid found in plants. This investigation is aimed at furthering the understanding of the role of blood in mediating the transport of MCT and its reactive metabolites in humans. Reactions of monocrotaline and its metabolites,...
nmrlearner Journal club 0 08-17-2011 01:33 PM
Changes in the NMR metabolic profile of human microglial cells exposed to lipopolysaccharide or morphine.
Changes in the NMR metabolic profile of human microglial cells exposed to lipopolysaccharide or morphine. Changes in the NMR metabolic profile of human microglial cells exposed to lipopolysaccharide or morphine. J Neuroimmune Pharmacol. 2010 Dec;5(4):574-81 Authors: El Ghazi I, Sheng WS, Hu S, Reilly BG, Lokensgard JR, Rock RB, Peterson PK, Wilcox GL, Armitage IM Microglial cells play a major role in host defense of the central nervous system. Once activated, several functional properties are up-regulated including migration, phagocytosis, and...
nmrlearner Journal club 0 03-01-2011 12:14 PM
[NMR paper] NMR study of the sites of human hemoglobin acetylated by aspirin.
NMR study of the sites of human hemoglobin acetylated by aspirin. Related Articles NMR study of the sites of human hemoglobin acetylated by aspirin. Biochim Biophys Acta. 1999 Jul 13;1432(2):333-49 Authors: Xu AS, Macdonald JM, Labotka RJ, London RE Acetylation of hemoglobin by aspirin and other acetylating agents has been used to generate hemoglobin analogs with altered structural and functional properties, and may prove useful in the treatment of sickle cell disease. We have studied the acetylation of human hemoglobin using acetylsalicylic...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR a
Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Related Articles Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res. 1996 May-Jun;16(3B):1375-80 Authors: Katz-Brull R, Degani H The mechanism and kinetics of choline transport and phosphorylation in MCF7 human breast cancer cells was studied by 31P, 13C and 2H NMR, applying the zero trans method. Choline was transported by a...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] 1H NMR studies of reactions of copper complexes with human blood plasma and urine.
1H NMR studies of reactions of copper complexes with human blood plasma and urine. Related Articles 1H NMR studies of reactions of copper complexes with human blood plasma and urine. Biochem Pharmacol. 1992 Jan 22;43(2):137-45 Authors: Bligh SW, Boyle HA, McEwen AB, Sadler PJ, Woodham RH Reactions of the copper complexes Cu(II)Cl2, 2-, and + (where DIPS is 3,5-diisopropylsalicylate and DMP is 2,9-dimethylphenanthroline) with human blood plasma and urine have been studied by 500 MHz 1H NMR spectroscopy, and CD spectroscopy has been used to...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] Metal complexes as allosteric effectors of human hemoglobin: an NMR study of the inte
Metal complexes as allosteric effectors of human hemoglobin: an NMR study of the interaction of the gadolinium(III) bis(m-boroxyphenylamide)diethylenetriaminepentaacetic acid complex with human oxygenated and deoxygenated hemoglobin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Metal complexes as allosteric effectors of human hemoglobin: an NMR study of the interaction of the...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:31 PM.


Map