BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindi

1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta.

Related Articles 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta.

Protein Sci. 1996 Nov;5(11):2162-74

Authors: Potts BC, Carlström G, Okazaki K, Hidaka H, Chazin WJ

The homodimeric S100 protein calcyclin has been studied in the apo state by two-dimensional 1H NMR spectroscopy. Using a combination of scalar correlation and NOE experiments, sequence-specific 1H NMR assignments were obtained for all but one backbone and > 90% of the side-chain resonances. To our knowledge, the 2 x 90 residue (20 kDa) calcyclin dimer is the largest protein system for which such complete assignments have been made by purely homonuclear methods. Sequential and medium-range NOEs and slowly exchanging backbone amide protons identified directly the four helices and the short antiparallel beta-type interaction between the two binding loops that comprise each subunit of the dimer. Further analysis of NOEs enabled the unambiguous assignment of 556 intrasubunit distance constraints, 24 intrasubunit hydrogen bonding constraints, and 2 x 26 intersubunit distance constraints. The conformation of the monomer subunit was refined by distance geometry and restrained molecular dynamics calculations using the intrasubunit constraints only. Calculation of the dimer structure starting from this conformational ensemble has been reported elsewhere. The extent of structural homology among the apo calcyclin subunit, the monomer subunit of apo S100 beta, and monomeric apo calbindin D9k has been examined in detail by comparing 1H NMR chemical shifts and secondary structures. This analysis was extended to a comprehensive comparison of the three-dimensional structures of the calcyclin monomer subunit and calbindin D9k, which revealed greater similarity in the packing of their hydrophobic cores than was anticipated previously. Together, these results support the hypothesis that all members of the S100 family have similar core structures and similar modes of dimerization. Analysis of the amphiphilicity of Helix IV is used to explain why calbindin D9k is monomeric, but full-length S100 proteins form homodimers.

PMID: 8931135 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins.
Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins. Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins. Prion. 2011 Jul 1;5(3) Authors: Santo KP, Berjanskii M, Wishart DS, Stepanova M Abstract Collective motions on ns-?s time scales are known to have a major impact on protein folding, stability, binding and enzymatic efficiency. It is also believed that these motions may have an...
nmrlearner Journal club 0 08-27-2011 04:53 PM
Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments.
Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. Biochim Biophys Acta. 2011 Jul 23; Authors: Cohen LS, Arshava B, Neumoin A, Becker JM, Güntert P, Zerbe O, Naider F Fragments of integral membrane proteins have been used to study the physical chemical properties of regions of transporters and receptors. Ste2p(G31-T110) is an 80-residue polypeptide which contains a...
nmrlearner Journal club 0 07-28-2011 10:51 AM
Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants.
Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. J Biotechnol. 2011 Jan 10;151(1):30-42 Authors: Choi MH, Xu J, Gutierrez M, Yoo T, Cho YH, Yoon SC Polyhydroxyalkanoic acids (PHAs) and rhamnolipids considered as biotechnologically important...
nmrlearner Journal club 0 04-28-2011 03:12 PM
[NMR paper] Automated analysis of protein NMR assignments and structures.
Automated analysis of protein NMR assignments and structures. Related Articles Automated analysis of protein NMR assignments and structures. Chem Rev. 2004 Aug;104(8):3541-56 Authors: Baran MC, Huang YJ, Moseley HN, Montelione GT
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-label
Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning. Related Articles Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning. J Biomol NMR. 2004 Apr;28(4):311-25 Authors: Fujiwara T, Todokoro Y, Yanagishita H, Tawarayama M, Kohno T, Wakamatsu K, Akutsu H Carbon-13 and nitrogen-15 signals of fully...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Automated analysis of NMR assignments and structures for proteins.
Automated analysis of NMR assignments and structures for proteins. Related Articles Automated analysis of NMR assignments and structures for proteins. Curr Opin Struct Biol. 1999 Oct;9(5):635-42 Authors: Moseley HN, Montelione GT Recent developments in protein NMR technology have provided spectral data that are highly amenable to analysis by advanced computer software systems. Specific data collection strategies, coupled with these computer programs, allow automated analysis of extensive backbone and sidechain resonance assignments and...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] 1H and 13C NMR assignments and structural aspects of a ferrocytochrome c-551 from the
1H and 13C NMR assignments and structural aspects of a ferrocytochrome c-551 from the purple phototrophic bacterium Ectothiorhodospira halophila. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H and 13C NMR assignments and structural aspects of a ferrocytochrome c-551 from the purple phototrophic bacterium Ectothiorhodospira halophila. Eur J Biochem. 1995 Jan 15;227(1-2):249-60 Authors: Bersch B, Brutscher B, Meyer TE, Marion D ...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the
Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant. Related Articles Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant. Biochemistry. 1990 Sep 18;29(37):8797-804 Authors: Satterlee JD, Erman JE, Mauro JM, Kraut J Proton NMR spectra of cytochrome c peroxidase (CcP) isolated from yeast (wild type) and two Escherichia coli...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:56 PM.


Map