Publication date: December 2017 Source:Journal of Magnetic Resonance, Volume 285
Author(s): T. Gopinath, Sarah E.D. Nelson, Gianluigi Veglia
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes. Graphical abstract
[NMR paper] Limits of Resolution and Sensitivity of Proton Detected MAS Solid-State NMR Experiments at 111 kHz in Deuterated and Protonated Proteins.
Limits of Resolution and Sensitivity of Proton Detected MAS Solid-State NMR Experiments at 111 kHz in Deuterated and Protonated Proteins.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_npg.gif Related Articles Limits of Resolution and Sensitivity of Proton Detected MAS Solid-State NMR Experiments at 111 kHz in Deuterated and Protonated Proteins.
Sci Rep. 2017 Aug 07;7(1):7444
Authors: Xue K, Sarkar R, Motz C, Asami S, Camargo DCR, Decker V, Wegner S, Tosner Z, Reif B
Abstract
MAS...
nmrlearner
Journal club
0
08-10-2017 12:13 AM
[NMR paper] Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs. Solution-State Methods.
Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs. Solution-State Methods.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs. Solution-State Methods.
J Phys Chem B. 2017 Jul 24;:
Authors: Lakomek NA, Frey L, Bibow S, Böckmann A, Riek R, Meier BH
Abstract
The structural and dynamical characterization of membrane proteins...
nmrlearner
Journal club
0
07-25-2017 07:46 PM
[NMR paper] Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.
Related Articles Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.
J Biomol NMR. 2015 Mar 7;
Authors: Gopinath T, Mote KR, Veglia G
Abstract
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane...
nmrlearner
Journal club
0
03-10-2015 07:22 PM
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples
Abstract
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15N longitudinal polarization to obtain two...
nmrlearner
Journal club
0
03-08-2015 01:07 AM
[NMR paper] Solid-state NMR Shows that Dynamically Different Domains of Membrane Proteins Have Different Hydration Dependence.
Solid-state NMR Shows that Dynamically Different Domains of Membrane Proteins Have Different Hydration Dependence.
Solid-state NMR Shows that Dynamically Different Domains of Membrane Proteins Have Different Hydration Dependence.
J Phys Chem B. 2014 Jul 15;
Authors: Zhang Z, Chen Y, Tang X, Li J, Wang L, Yang J
Abstract
Hydration has a profound influence on the structure, dynamics and functions of membrane and membrane-embedded proteins. So far hydration response of molecular dynamics of membrane proteins in lipid bilayers...
nmrlearner
Journal club
0
07-16-2014 10:46 AM
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
July 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 220</br>
</br>
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
T. Gopinath, Gianluigi Veglia</br>
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner
Journal club
0
04-26-2012 08:10 PM
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Abstract Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal...