Related Articles1H and 15N assignment of NMR spectrum, secondary structure and global folding of the immunophilin-like domain of the 59-kDa FK506-binding protein.
Eur J Biochem. 1995 Aug 1;231(3):761-72
Authors: Rouvière-Fourmy N, Craescu CT, Mispelter J, Lebeau MC, Baulieu EE
FKBP59, a 59-kDa FK506 binding protein, was discovered in heterooligomeric complexes containing nontransformed, non-DNA binding, steroid receptors. Sequence similarity search and secondary structure prediction suggested that the protein has a multi-domain organization, the N-terminal domain having a great similarity to human FKBP12 (12-kDa FK506-binding protein). FKBP59 binds immunosuppressant FK506 and has peptidylprolyl cis-trans-isomerase activity, both properties being localized in the N-terminal domain (FKBP59-I). In order to characterize its conformational features and to better understand its biological significance, we overexpressed and 15N-labeled this domain (149 amino acids) in Escherichia coli and initiated an NMR structural study in solution. Almost complete sequence-specific assignment of the 1H and 15N resonances was achieved using two-dimensional and three-dimensional homonuclear and heteronuclear experiments. Localization of the secondary structure elements was derived essentially from C alpha H chemical shift distribution along the sequence, the short-range and medium-range NOE connectivities and exchange kinetics of amide protons. The domain has a structured part comprising six beta-strands and a three-turn alpha-helix between K87 and M96. The first 17 residues are highly flexible and show no regular secondary structure. The beta-sheet structure, derived from long-range connectivities between backbone protons, consists of six beta-strands defined as follows: B1, V22-I24; B2, V32-K37; B3, D50-L61; B4, T64-S68 and F76-L80; B5, E100-K107; B6, L127-F137. They are organized in an antiparallel beta-sheet with the connecting topology +1, +3, +1, -3, +1. The alpha-helix connects strand B4 to strand B5. Globally, the structure of FKBP59-I, derived from the present work, is similar to the NMR-derived structures of uncomplexed FKBP12. However, several conformational differences were noted at this level of structural analysis. The beta-sheet of the FKBP59 domain has an additional strand at the N-terminal and the alpha-helix is longer by about one helical turn. In addition, strand B4 has two components, separated by a large bulge (seven residues); the first component was observed in the X-ray or NMR structures of complexed FKBP12 but not in the NMR-derived, uncomplexed structure.
[NMR paper] Secondary structure and calcium-induced folding of the Clostridium thermocellum docke
Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy.
Related Articles Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy.
Arch Biochem Biophys. 2000 Jul 15;379(2):237-44
Authors: Lytle BL, Volkman BF, Westler WM, Wu JH
Assembly of the cellulosome, a large, extracellular cellulase complex, depends upon docking of a myriad of enzymatic subunits to homologous receptors, or cohesin domains, arranged...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calc
NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea.
Related Articles NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea.
Protein Sci. 1999 Dec;8(12):2580-8
Authors: Aitio H, Annila A, Heikkinen S, Thulin E, Drakenberg T, Kilpeläinen I
Calerythrin is a 20 kDa calcium-binding protein isolated from gram-positive bacterium Saccharopolyspora erythraea. Based on amino acid...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein u
Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein using three- and four-dimensional heteronuclear (13C,15N) NMR spectroscopy.
Related Articles Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein using three- and four-dimensional heteronuclear (13C,15N) NMR spectroscopy.
Biochemistry. 1994 Sep 6;33(35):10731-42
Authors: Moy FJ, Lowry DF, Matsumura P, Dahlquist FW, Krywko JE, Domaille PJ
NMR spectroscopy has been used to study recombinant Escherichia coli CheY, a 128-residue...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] Secondary structure and protein folding of recombinant chloroplastic thioredoxin Ch2
Secondary structure and protein folding of recombinant chloroplastic thioredoxin Ch2 from the green alga Chlamydomonas reinhardtii as determined by 1H NMR.
Related Articles Secondary structure and protein folding of recombinant chloroplastic thioredoxin Ch2 from the green alga Chlamydomonas reinhardtii as determined by 1H NMR.
J Biochem. 1993 Sep;114(3):421-31
Authors: Lancelin JM, Stein M, Jacquot JP
The recombinant form of the chloroplastic thioredoxin Ch2 from the green alga Chlamydomonas reinhardtii that preferentially activates the NADP...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] 1H-NMR resonance assignments, secondary structure, and global fold of the TR1C fragme
1H-NMR resonance assignments, secondary structure, and global fold of the TR1C fragment of turkey skeletal troponin C in the calcium-free state.
Related Articles 1H-NMR resonance assignments, secondary structure, and global fold of the TR1C fragment of turkey skeletal troponin C in the calcium-free state.
Biochemistry. 1993 Apr 6;32(13):3461-7
Authors: Findlay WA, Sykes BD
The TR1C fragment of turkey skeletal muscle TnC (residues 12-87) comprises the two regulatory calcium binding sites of the protein. Complete assignments of the 1H-NMR...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
[NMR paper] Assignment of the 1H NMR spectrum and secondary structure elucidation of the single-s
Assignment of the 1H NMR spectrum and secondary structure elucidation of the single-stranded DNA binding protein encoded by the filamentous bacteriophage IKe.
Related Articles Assignment of the 1H NMR spectrum and secondary structure elucidation of the single-stranded DNA binding protein encoded by the filamentous bacteriophage IKe.
Biochemistry. 1992 Feb 4;31(4):1254-62
Authors: van Duynhoven JP, Folkers PJ, Prinse CW, Harmsen BJ, Konings RN, Hilbers CW
By means of 2D NMR techniques, all backbone resonances in the 1H NMR spectrum of the...
nmrlearner
Journal club
0
08-21-2010 11:41 PM
[NMR paper] Complete assignment of the 1H NMR spectrum and secondary structure of the DNA binding
Complete assignment of the 1H NMR spectrum and secondary structure of the DNA binding domain of GAL4.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Complete assignment of the 1H NMR spectrum and secondary structure of the DNA binding domain of GAL4.
FEBS Lett. 1990 Dec 10;276(1-2):49-53
Authors: Gadhavi PL, Raine AR, Alefounder PR, Laue ED
Complete 1H NMR resonance assignments are presented for the cysteine rich region of the DNA binding domain of the yeast...