BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-28-2014, 06:08 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 19F NMR Reveals Multiple Conformations at the Dimer Interface of the Nonstructural Protein 1 Effector Domain from Influenza A Virus

19F NMR Reveals Multiple Conformations at the Dimer Interface of the Nonstructural Protein 1 Effector Domain from Influenza A Virus

Publication date: Available online 27 February 2014
Source:Structure

Author(s): James*M. Aramini , Keith Hamilton , Li-Chung Ma , G.V.T. Swapna , Paul*G. Leonard , John*E. Ladbury , Robert*M. Krug , Gaetano*T. Montelione

Nonstructural protein 1 of influenza A virus (NS1A) is a*conserved virulence factor comprised of an N-terminal double-stranded RNA (dsRNA)-binding domain and a multifunctional C-terminal effector domain (ED), each of which can independently form symmetric homodimers. Here we apply 19F NMR to NS1A from influenza A/Udorn/307/1972 virus (H3N2) labeled with 5-fluorotryptophan, and we demonstrate that the*19F signal of Trp187 is a sensitive, direct monitor of the ED helix:helix dimer interface. 19F relaxation dispersion data reveal the presence of conformational dynamics within this functionally important protein:protein interface, whose rate is more than three orders of magnitude faster than the kinetics of ED dimerization. 19F NMR also affords direct spectroscopic evidence that Trp187, which mediates intermolecular ED:ED interactions required for cooperative dsRNA binding, is solvent exposed in full-length NS1A at concentrations below aggregation. These results have important implications for the diverse roles of this NS1A epitope during influenza virus infection.
Graphical abstract


Teaser

19F NMR is a potentially powerful approach for directly probing dynamics at protein interaction surfaces. Aramini et*al. apply 19F NMR to 5-F-Trp-labeled influenza A NS1 protein and its isolated effector domain (ED) and reveal dynamic interconversion between multiple conformations at the ED dimer interface.





More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
30-or nmr spectroscopy reveals unexpected structural variation at the protein-protein interface in mhc class i molecules
30-OR NMR SPECTROSCOPY REVEALS UNEXPECTED STRUCTURAL VARIATION AT THE PROTEIN-PROTEIN INTERFACE IN MHC CLASS I MOLECULES Publication date: November 2013 Source:Human Immunology, Volume 74, Supplement</br> Author(s): Andreas Ziegler , Monika Beerbaum , Martin Ballaschk , Natalja Erdmann , Christina Schnick , Anne Diehl , Barbara Uchanska-Ziegler , Peter Schmieder</br> Aim ?2-microglobulin (?2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high...
nmrlearner Journal club 0 10-17-2013 04:38 AM
Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR
Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR Abstract The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using two-dimensional (2D) magic-angle-spinning solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and...
nmrlearner Journal club 0 10-07-2013 08:31 AM
[NMR paper] Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR.
Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR. Protein Sci. 2013 Sep 10; Authors: Liao SY, Fritzsching KJ, Hong M Abstract The influenza A M2 protein forms a proton channel for virus infection and mediates virus...
nmrlearner Journal club 0 09-12-2013 11:02 PM
Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR
Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR Abstract The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane (TM) helix and an adjacent amphipathic helix (AH), the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using 2D magic-angle-spinning (MAS) solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and...
nmrlearner Journal club 0 09-10-2013 08:44 PM
[NMR paper] NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules.
NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. J Biomol NMR. 2013 Sep 5; Authors: Beerbaum M, Ballaschk M, Erdmann N, Schnick C, Diehl A, Uchanska-Ziegler B, Ziegler A, Schmieder P Abstract ?2-Microglobulin (?2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I...
nmrlearner Journal club 0 09-06-2013 06:52 PM
[NMR paper] Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe
Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR. Related Articles Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR. Protein Sci. 2005 Apr;14(4):848-55 Authors: Lowery TJ, Doucleff M, Ruiz EJ, Rubin SM, Pines A, Wemmer DE The chemical shift of the (129)Xe NMR signal has been shown to be extremely sensitive to the local environment around the atom and has been used to follow processes such as ligand binding by bacterial periplasmic binding proteins. Here we show...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Docking multiple conformations of a flexible ligand into a protein binding site using
Docking multiple conformations of a flexible ligand into a protein binding site using NMR restraints. Related Articles Docking multiple conformations of a flexible ligand into a protein binding site using NMR restraints. Proteins. 2002 Feb 15;46(3):295-307 Authors: Zabell AP, Post CB A method is described for docking a large, flexible ligand using intra-ligand conformational restraints from exchange-transferred NOE (etNOE) data. Numerous conformations of the ligand are generated in isolation, and a subset of representative conformations is...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)
Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)N polarization inversion spin exchange at magic angle NMR. Related Articles Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)N polarization inversion spin exchange at magic angle NMR. Biophys J. 2000 Aug;79(2):767-75 Authors: Song Z, Kovacs FA, Wang J, Denny JK, Shekar SC, Quine JR, Cross TA The M2 protein from the influenza A virus forms a proton channel in the virion that is essential for infection. This tetrameric protein...
nmrlearner Journal club 0 11-19-2010 08:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:14 AM.


Map