Publication date: Available online 27 February 2014 Source:Structure
Author(s): James*M. Aramini , Keith Hamilton , Li-Chung Ma , G.V.T. Swapna , Paul*G. Leonard , John*E. Ladbury , Robert*M. Krug , Gaetano*T. Montelione
Nonstructural protein 1 of influenza A virus (NS1A) is a*conserved virulence factor comprised of an N-terminal double-stranded RNA (dsRNA)-binding domain and a multifunctional C-terminal effector domain (ED), each of which can independently form symmetric homodimers. Here we apply 19F NMR to NS1A from influenza A/Udorn/307/1972 virus (H3N2) labeled with 5-fluorotryptophan, and we demonstrate that the*19F signal of Trp187 is a sensitive, direct monitor of the ED helix:helix dimer interface. 19F relaxation dispersion data reveal the presence of conformational dynamics within this functionally important protein:protein interface, whose rate is more than three orders of magnitude faster than the kinetics of ED dimerization. 19F NMR also affords direct spectroscopic evidence that Trp187, which mediates intermolecular ED:ED interactions required for cooperative dsRNA binding, is solvent exposed in full-length NS1A at concentrations below aggregation. These results have important implications for the diverse roles of this NS1A epitope during influenza virus infection. Graphical abstract
Teaser
19F NMR is a potentially powerful approach for directly probing dynamics at protein interaction surfaces. Aramini et*al. apply 19F NMR to 5-F-Trp-labeled influenza A NS1 protein and its isolated effector domain (ED) and reveal dynamic interconversion between multiple conformations at the ED dimer interface.
30-or nmr spectroscopy reveals unexpected structural variation at the protein-protein interface in mhc class i molecules
30-OR NMR SPECTROSCOPY REVEALS UNEXPECTED STRUCTURAL VARIATION AT THE PROTEIN-PROTEIN INTERFACE IN MHC CLASS I MOLECULES
Publication date: November 2013
Source:Human Immunology, Volume 74, Supplement</br>
Author(s): Andreas Ziegler , Monika Beerbaum , Martin Ballaschk , Natalja Erdmann , Christina Schnick , Anne Diehl , Barbara Uchanska-Ziegler , Peter Schmieder</br>
Aim ?2-microglobulin (?2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high...
nmrlearner
Journal club
0
10-17-2013 04:38 AM
Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR
Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR
Abstract
The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using two-dimensional (2D) magic-angle-spinning solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and...
nmrlearner
Journal club
0
10-07-2013 08:31 AM
[NMR paper] Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR.
Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR.
Protein Sci. 2013 Sep 10;
Authors: Liao SY, Fritzsching KJ, Hong M
Abstract
The influenza A M2 protein forms a proton channel for virus infection and mediates virus...
nmrlearner
Journal club
0
09-12-2013 11:02 PM
Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR
Conformational analysis of the full-length M2 protein of the influenza a virus using solid-state NMR
Abstract
The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane (TM) helix and an adjacent amphipathic helix (AH), the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using 2D magic-angle-spinning (MAS) solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and...
nmrlearner
Journal club
0
09-10-2013 08:44 PM
[NMR paper] NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules.
NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules.
NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules.
J Biomol NMR. 2013 Sep 5;
Authors: Beerbaum M, Ballaschk M, Erdmann N, Schnick C, Diehl A, Uchanska-Ziegler B, Ziegler A, Schmieder P
Abstract
?2-Microglobulin (?2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I...
nmrlearner
Journal club
0
09-06-2013 06:52 PM
[NMR paper] Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe
Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR.
Related Articles Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR.
Protein Sci. 2005 Apr;14(4):848-55
Authors: Lowery TJ, Doucleff M, Ruiz EJ, Rubin SM, Pines A, Wemmer DE
The chemical shift of the (129)Xe NMR signal has been shown to be extremely sensitive to the local environment around the atom and has been used to follow processes such as ligand binding by bacterial periplasmic binding proteins. Here we show...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Docking multiple conformations of a flexible ligand into a protein binding site using
Docking multiple conformations of a flexible ligand into a protein binding site using NMR restraints.
Related Articles Docking multiple conformations of a flexible ligand into a protein binding site using NMR restraints.
Proteins. 2002 Feb 15;46(3):295-307
Authors: Zabell AP, Post CB
A method is described for docking a large, flexible ligand using intra-ligand conformational restraints from exchange-transferred NOE (etNOE) data. Numerous conformations of the ligand are generated in isolation, and a subset of representative conformations is...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)
Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)N polarization inversion spin exchange at magic angle NMR.
Related Articles Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)N polarization inversion spin exchange at magic angle NMR.
Biophys J. 2000 Aug;79(2):767-75
Authors: Song Z, Kovacs FA, Wang J, Denny JK, Shekar SC, Quine JR, Cross TA
The M2 protein from the influenza A virus forms a proton channel in the virion that is essential for infection. This tetrameric protein...