BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-06-2014, 02:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default (19)F-NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids.

(19)F-NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids.

(19)F-NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids.

Biochim Biophys Acta. 2014 Mar 31;

Authors: Afonin S, Glaser RW, Sachse C, Salgado J, Wadhwani P, Ulrich AS

Abstract
Many amphiphilic antimicrobial peptides permeabilize bacterial membranes via successive steps of binding, re-alignment and/or oligomerization. Here, we have systematically compared the lipid interactions of two structurally unrelated peptides: the cyclic ?-pleated gramicidin S (GS), and the ?-helical PGLa. (19)F-NMR was used to screen their molecular alignment in various model membranes over a wide range of temperatures. Both peptides were found to respond to the phase state and composition of these different samples in a similar way. In phosphatidylcholines, both peptides first bind to the bilayer surface. Above a certain threshold concentration they can re-align and immerse more deeply into the hydrophobic core, which presumably involves oligomerization. Re-alignment is most favorable around the lipid chain melting temperature, and also promoted by decreasing bilayer thickness. The presence of anionic lipids has no influence in fluid membranes, but in the gel phase the alignment states are more complex. Unsaturated acyl chains and other lipids with intrinsic negative curvature prevent re-alignment, hence GS and PGLa do not insert into mixtures resembling bacterial membranes, nor into bacterial lipid extracts. Cholesterol, which is present in high concentrations in animal membranes, even leads to an expulsion of the peptides from the bilayer and prevents their binding altogether. However, a very low cholesterol content of 10% was found to promote binding and re-alignment of both peptides. Overall, these findings show that the ability of amphiphilic peptides to re-align and immerse into a membrane is determined by the physico-chemical properties of the lipids, such as spontaneous curvature. The remarkably similar behavior observed here for two structurally unrelated molecules (with different conformation, size, shape, charge) suggests that their activity at the membrane level is largely governed by the properties of the constituent lipids, while the selectivity towards different cell types is additionally ruled by electrostatic attraction between peptide and cell surface. This article is part of a Special Issue entitled: Interfacially active peptides and proteins.


PMID: 24699372 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] On the role of NMR spectroscopy for characterization of antimicrobial peptides.
On the role of NMR spectroscopy for characterization of antimicrobial peptides. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles On the role of NMR spectroscopy for characterization of antimicrobial peptides. Methods Mol Biol. 2013;1063:159-80 Authors: Porcelli F, Ramamoorthy A, Barany G, Veglia G Abstract Antimicrobial peptides (AMPs) provide a primordial source of immunity, conferring upon eukaryotic cells resistance against bacteria,...
nmrlearner Journal club 0 03-01-2014 11:11 AM
NMR Structural Studies of Antimicrobial Peptides as In-Plane Helix of Membrane Proteins
NMR Structural Studies of Antimicrobial Peptides as In-Plane Helix of Membrane Proteins Publication date: 28 January 2014 Source:Biophysical Journal, Volume 106, Issue 2, Supplement 1</br> Author(s): Yongae Kim , Ji-Ho Jeong , Ji-Sun Kim</br> </br></br> </br></br> More...
nmrlearner Journal club 0 01-29-2014 12:50 AM
[NMR paper] Determining the mode of action involved in the antimicrobial activity of synthetic peptides: a solid-state NMR and FTIR study.
Determining the mode of action involved in the antimicrobial activity of synthetic peptides: a solid-state NMR and FTIR study. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles Determining the mode of action involved in the antimicrobial activity of synthetic peptides: a solid-state NMR and FTIR study. Biophys J. 2012 Oct 3;103(7):1470-9 Authors: Lorin A, Noël M, Provencher MÈ, Turcotte V, Cardinal S, Lagüe P, Voyer N, Auger M Abstract We have previously...
nmrlearner Journal club 0 03-01-2013 09:57 PM
Solution and Solid-State NMR Structural Studies of Antimicrobial Peptides LPcin-I and LPcin-II.
Solution and Solid-State NMR Structural Studies of Antimicrobial Peptides LPcin-I and LPcin-II. Solution and Solid-State NMR Structural Studies of Antimicrobial Peptides LPcin-I and LPcin-II. Biophys J. 2011 Sep 7;101(5):1193-201 Authors: Park TJ, Kim JS, Ahn HC, Kim Y Abstract Lactophoricin (LPcin-I) is an antimicrobial, amphiphatic, cationic peptide with 23-amino acid residues isolated from bovine milk. Its analogous peptide, LPcin-II, lacks six N-terminal amino acids compared to LPcin-I. Interestingly, LPcin-II does not display any...
nmrlearner Journal club 0 09-06-2011 06:02 PM
Antimicrobial peptides and their superior fluorinated analogues: structure-activity relationships as revealed by NMR spectroscopy and MD calculations.
Antimicrobial peptides and their superior fluorinated analogues: structure-activity relationships as revealed by NMR spectroscopy and MD calculations. Antimicrobial peptides and their superior fluorinated analogues: structure-activity relationships as revealed by NMR spectroscopy and MD calculations. Chembiochem. 2010 Nov 22;11(17):2424-32 Authors: Díaz MD, Palomino-Schätzlein M, Corzana F, Andreu C, Carbajo RJ, del Olmo M, Canales-Mayordomo A, Pineda-Lucena A, Asensio G, Jiménez-Barbero J The conformations of two synthetic pentapeptides with...
nmrlearner Journal club 0 05-04-2011 04:14 PM
[NMR paper] Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis.
Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis. Related Articles Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis. FASEB J. 2005 Sep;19(11):1431-40 Authors: Astrakas LG, Goljer I, Yasuhara S, Padfield KE, Zhang Q, Gopalan S, Mindrinos MN, Dai G, Yu YM, Martyn JA, Tompkins RG, Rahme LG, Tzika AA Burn trauma triggers hypermetabolism and muscle wasting via increased cellular protein degradation and apoptosis. Proton...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] The interactions of the HIV gp41 fusion peptides with zwitterionic membrane mimics de
The interactions of the HIV gp41 fusion peptides with zwitterionic membrane mimics determined by NMR spectroscopy. Related Articles The interactions of the HIV gp41 fusion peptides with zwitterionic membrane mimics determined by NMR spectroscopy. Biochim Biophys Acta. 2004 Nov 17;1667(1):67-81 Authors: Morris KF, Gao X, Wong TC The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Membrane protein topology probed by (1)H spin diffusion from lipids using solid-state
Membrane protein topology probed by (1)H spin diffusion from lipids using solid-state NMR spectroscopy. Related Articles Membrane protein topology probed by (1)H spin diffusion from lipids using solid-state NMR spectroscopy. J Am Chem Soc. 2002 Feb 6;124(5):874-83 Authors: Huster D, Yao X, Hong M We describe a two-dimensional solid-state NMR technique to investigate membrane protein topology under magic-angle spinning conditions. The experiment detects the rate of (1)H spin diffusion from the mobile lipids to the rigid protein. While spin...
nmrlearner Journal club 0 11-24-2010 08:49 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:48 AM.


Map