[NMR paper] (19)F NMR Reveals the Dynamics of Substrate Binding and Lid Closure for Iodotyrosine Deiodinase as a Complement to Steady-State Kinetics and Crystallography
(19)F NMR Reveals the Dynamics of Substrate Binding and Lid Closure for Iodotyrosine Deiodinase as a Complement to Steady-State Kinetics and Crystallography
Active site lids are common features of enzymes and typically undergo conformational changes upon substrate binding to promote catalysis. Iodotyrosine deiodinase is no exception and contains a lid segment in all of its homologues from human to bacteria. The solution-state dynamics of the lid have now been characterized using ^(19)F NMR spectroscopy with a CF(3)-labeled enzyme and CF(3)O-labeled ligands. From two-dimensional ^(19)F-^(19)F NMR exchange spectroscopy, interconversion rates between...
[NMR paper] High Resolution 31P Field Cycling NMR Reveals Unsuspected Features of Enzyme-Substrate-Cofactor Dynamics
High Resolution 31P Field Cycling NMR Reveals Unsuspected Features of Enzyme-Substrate-Cofactor Dynamics
The dynamic interactions of enzymes and substrates underpins catalysis, yet few techniques can interrogate the dynamics of protein-bound ligands. Here we describe the use of field cycling NMR relaxometry to measure the dynamics of enzyme-bound substrates and cofactors in catalytically competent complexes of GMP reductase. These studies reveal new binding modes unanticipated by x-ray crystal structures and reaction-specific dynamic networks. Importantly, this work demonstrates that...
nmrlearner
Journal club
0
04-18-2022 05:47 PM
[NMR paper] Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR.
Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full_free.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR.
Proc...
nmrlearner
Journal club
0
06-27-2018 01:51 AM
Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR [Biophysics and Computational Biology]
Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR
Lalit Deshmukh, Vitali Tugarinov, John M. Louis, G. Marius Clore...
Date: 2017-11-14
The conversion of immature noninfectious HIV-1 particles to infectious virions is dependent upon the sequential cleavage of the precursor group-specific antigen (Gag) polyprotein by HIV-1 protease. The precise mechanism whereby protease recognizes distinct Gag cleavage sites, located in the intrinsically disordered linkers connecting the globular domains of Gag, remains...
[NMR paper] Predicting and Understanding the Enzymatic Inhibition of Human Peroxiredoxin 5 by 4-Substituted Pyrocatechols Combining Funnel-Metadynamics, Solution NMR and Steady-State Kinetics.
Predicting and Understanding the Enzymatic Inhibition of Human Peroxiredoxin 5 by 4-Substituted Pyrocatechols Combining Funnel-Metadynamics, Solution NMR and Steady-State Kinetics.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Predicting and Understanding the Enzymatic Inhibition of Human Peroxiredoxin 5 by 4-Substituted Pyrocatechols Combining Funnel-Metadynamics, Solution NMR and Steady-State Kinetics.
Biochemistry. 2016 May 30;
Authors: Chow ML, Troussicot L,...
nmrlearner
Journal club
0
05-31-2016 09:07 PM
[NMR paper] Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies.
Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies.
Related Articles Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies.
Subcell Biochem. 2015;72:261-278
Authors: Roche J, Dellarole M, Royer CA, Roumestand C
Abstract
Defining the physical-chemical determinants of protein folding and stability, under normal and pathological conditions has constituted a major subfield in biophysical chemistry for over 50 years. Although a great deal of...
nmrlearner
Journal club
0
07-16-2015 11:21 AM
[NMR paper] NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity.
NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity.
Related Articles NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity.
Nat Commun. 2013;4:1890
Authors: Byeon IJ, Ahn J, Mitra M, Byeon CH, Hercík K, Hritz J, Charlton LM, Levin JG, Gronenborn AM
Abstract
Human APOBEC3A is a single-stranded DNA cytidine deaminase that restricts viral pathogens and endogenous retrotransposons, and has a role in the innate immune response. Furthermore, its...