BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The (17)O-NMR shielding range and shielding time scale and detection of discrete hydr

The (17)O-NMR shielding range and shielding time scale and detection of discrete hydrogen-bonded conformational states in peptides.

Related Articles The (17)O-NMR shielding range and shielding time scale and detection of discrete hydrogen-bonded conformational states in peptides.

Biopolymers. 2001 Sep;59(3):125-30

Authors: Gerothanassis IP

The (17)O-NMR shielding range and shielding time scale due to hydrogen-bonding interactions in peptides are critically evaluated relative to those of (1)H-NMR. Furthermore, the assumptions and conclusions in previous (17)O-NMR studies on the detection of discrete conformational states in peptides (V. Tsikaris et al., Biopolymers, 2000, Vol. 53, pp. 135-139) are reconsidered. Consistent examination of the method demonstrates that although (17)O shieldings of peptide oxygens are very sensitive to hydrogen bonding interactions, the (17)O-NMR shielding time scale is not advantageous compared to that of (1)H-NMR, and thus it is not suitable for the detection of discrete hydrogen-bonded conformational states in peptides. (17)O-NMR spectroscopy is prone to interpretation errors due to the formation of (17)O-labeled impurities during the synthetic procedures (A. Steinschneider et al., International Journal of Peptide and Protein Research, 1981, Vol. 18, pp. 324-333).

PMID: 11391562 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Investigation of solvent effect and NMR shielding tensors of p53 tumor-suppressor gene in drug design.
Investigation of solvent effect and NMR shielding tensors of p53 tumor-suppressor gene in drug design. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Investigation of solvent effect and NMR shielding tensors of p53 tumor-suppressor gene in drug design. Int J Nanomedicine. 2011;6:213-8 Authors: Irani S, Monajjemi M, Honarparvar B, Atyabi S, Sadeghizadeh M Abstract The p53 tumor-suppressor gene encodes a nuclear phosphoprotein with cancer- inhibiting properties. The...
nmrlearner Journal club 0 08-25-2011 04:10 PM
Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G
Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G Abstract We performed density functional calculations of backbone 15N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3....
nmrlearner Journal club 0 02-11-2011 08:36 PM
[NMR paper] Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N r
Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. Related Articles Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc. 2001 Feb 7;123(5):967-75 Authors: Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE A new NMR experiment is presented for...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-
Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements. Related Articles Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements. J Biomol Struct Dyn. 1999 Aug;17(1):157-74 Authors: Orekhov VY, Korzhnev DM, Pervushin KV, Hoffmann E, Arseniev AS This paper presents a procedure for detection of intermediate nanosecond internal dynamics in globular proteins. The procedure uses 1H-15N relaxation measurements at several spectrometer frequencies...
nmrlearner Journal club 0 11-18-2010 08:31 PM
Conformational dependence of 13C shielding and coupling constants for methionine
Abstract Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT...
nmrlearner Journal club 0 08-25-2010 03:51 PM
Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Si
Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Site-Specific NMR Relaxation Rates. Related Articles Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Site-Specific NMR Relaxation Rates. J Am Chem Soc. 2010 Aug 6; Authors: Krushelnitsky A, Zinkevich T, Reichert D, Chevelkov V, Reif B For the first time, we have demonstrated the site-resolved measurement of reliable (i.e., free of interfering effects) (15)N R(1rho) relaxation rates from a solid protein to extract dynamic...
nmrlearner Journal club 0 08-17-2010 03:36 AM
Effect of site-specific variation of CSA and 15N chemical shielding tensor on model-free order parameter
:rolleyes: Variability of the 15N Chemical Shielding Tensors in the B3 Domain of Protein G from 15N Relaxation Measurements at Several Fields. Implications for Backbone Order Parameters Jennifer B. Hall and David Fushman J. Am. Chem. Soc., 128 (24), 7855 -7870, 2006.
nmrlearner Journal club 0 06-14-2006 11:17 AM
Monitoring H-D exchange on second time scale with Frydman NMR spectroscopy
http://www.bionmr.com/images/frydman.gif Real-Time Monitoring of Chemical Transformations by Ultrafast 2D NMR Spectroscopy Maayan Gal, Mor Mishkovsky, and Lucio Frydman J. Am. Chem. Soc.; 2006; 128(3) pp 951 - 956; Abstract:
nmrlearner Journal club 0 01-24-2006 07:12 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:38 AM.


Map