Related Articles15N NMR relaxation as a probe for helical intrinsic propensity: the case of the unfolded D2 domain of annexin I.
J Biomol NMR. 2001 Jan;19(1):3-18
Authors: Ochsenbein F, Guerois R, Neumann JM, Sanson A, Guittet E, van Heijenoort C
The isolated D2 domain of annexin I is unable to adopt a tertiary fold but exhibits both native and non-native residual structures. It thus constitutes an attractive model for the investigation of dynamics of partially folded states in the context of protein folding and stability. 15N relaxation parameters of the D2 domain have been acquired at three different magnetic fields, 500, 600 and 800 MHz. This enables the estimation of the contribution of conformational exchange to the relaxation parameters on the micro- to millisecond time scale, thus providing a suitable data set for the description of motions on the pico- and nanosecond time scale. The analysis of the seven spectral densities obtained (J(0), J(50 MHz), J(60 MHz), J(80 MHz), , , ) provides complementary and meaningful results on the conformational features of the D2 domain structure previously depicted by chemical shift and NOE data. Especially, residual helix segments exhibit distinct dynamical behaviors that are related to their intrinsic helical propensity. Beside the spectral density analysis, a series of models derived from the Lipari and Szabo model-free approach are investigated. Two models containing three parameters are able to reproduce equally well the experimental data within experimental errors but provide different values of order parameters and correlation times. The inability to find a unique model to describe the data emphasizes the difficulty to use and interpret the model-free parameters in the case of partially or fully unfolded proteins consisting of a wide range of interconverting conformers.
Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics.
Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics.
Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics.
Top Curr Chem. 2011 Sep 7;
Authors: Ishima R
Abstract
Nuclear Magnetic Resonance (NMR) relaxation is a powerful technique that provides information about internal dynamics associated with configurational energetics in proteins, as well as site-specific information involved in conformational equilibria. In particular, (15)N relaxation is a useful probe to...
nmrlearner
Journal club
0
09-08-2011 06:50 PM
[Question from NMRWiki Q&A forum] Tuning probe failed after a dual probe was replaced with a BBI probe
Tuning probe failed after a dual probe was replaced with a BBI probe
We generally use Dual to run 13C and BBI to run 2D. After changed the probe, the command "edhead" was used to set the probe. Put the sample tube, lock the solvent, and then type "atma" to tune the probe. We always do it like this, but now we can not tune the proton after installed the BBI probe (13C is OK). The dip can not be found by "atma", and "atmm" was also not work on forming a dip. What is the most possible reason for this error? How to solve it and avoid it in the future ? Thanks. (Instrument: Bruker 400 MHz,...
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Chembiochem. 2005 Sep;6(9):1693-700
Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C
Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Residual backbone and side-chain 13C and 15N resonance assignments of the intrinsic t
Residual backbone and side-chain 13C and 15N resonance assignments of the intrinsic transmembrane light-harvesting 2 protein complex by solid-state Magic Angle Spinning NMR spectroscopy.
Related Articles Residual backbone and side-chain 13C and 15N resonance assignments of the intrinsic transmembrane light-harvesting 2 protein complex by solid-state Magic Angle Spinning NMR spectroscopy.
J Biomol NMR. 2005 Apr;31(4):279-93
Authors: Gammeren AJ, Hulsbergen FB, Hollander JG, Groot HJ
This study reports the sequence specific chemical shifts...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues
Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide.
Related Articles Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide.
J Mol Biol. 1998 Dec 18;284(5):1597-609
Authors: Griffiths-Jones SR, Sharman GJ, Maynard AJ, Searle MS
Analysis of residues in coil regions of protein structures...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Peptides and proteins in neurodegenerative disease: helix propensity of a polypeptide
Peptides and proteins in neurodegenerative disease: helix propensity of a polypeptide containing helix 1 of the mouse prion protein studied by NMR and CD spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Peptides and proteins in neurodegenerative disease: helix propensity of a polypeptide containing helix 1 of the mouse prion protein studied by NMR and CD spectroscopy.
Biopolymers. 1999;51(2):145-52
Authors: Liu A, Riek R, Zahn R,...