BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-25-2018, 06:02 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 15 N transverse relaxation measurements for the characterization of Āµsā??ms dynamics are deteriorated by the deuterium isotope effect on 15 N resulting from solvent exchange

15 N transverse relaxation measurements for the characterization of Āµsā??ms dynamics are deteriorated by the deuterium isotope effect on 15 N resulting from solvent exchange

Abstract

15N R2 relaxation measurements are key for the elucidation of the dynamics of both folded and intrinsically disordered proteins (IDPs). Here we show, on the example of the intrinsically disordered protein Ī±-synuclein and the folded domain PDZ2, that at physiological pH and near physiological temperatures amideā??water exchange can severely skew Hahn-echo based 15N R2 relaxation measurements as well as low frequency data points in CPMG relaxation dispersion experiments. The nature thereof is the solvent exchange with deuterium in the sample buffer, which modulates the 15N chemical shift tensor via the deuterium isotope effect, adding to the apparent relaxation decay which leads to systematic errors in the relaxation data. This results in an artificial increase of the measured apparent 15N R2 rate constantsā??which should not be mistaken with protein inherent chemical exchange contributions, Rex, to 15N R2. For measurements of 15N R2 rate constants of IDPs and folded proteins at physiological temperatures and pH, we recommend therefore the use of a very low D2O molar fraction in the sample buffer, as low as 1%, or the use of an external D2O reference along with a modified 15N R2 Hahn-echo based experiment. This combination allows for the measurement of Rex contributions to 15N R2 originating from conformational exchange in a time window from Āµs to ms.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Impact of two-bond 15 Nā?? 15 N scalar couplings on 15 N transverse relaxation measurements for arginine side chains of proteins
Impact of two-bond 15 Nā?? 15 N scalar couplings on 15 N transverse relaxation measurements for arginine side chains of proteins Abstract NMR relaxation of arginine (Arg) 15NĪµ nuclei is useful for studying side-chain dynamics of proteins. In this work, we studied the impact of two geminal 15Nā??15N scalar couplings on measurements of transverse relaxation rates (R 2 ) for Arg side-chain 15NĪµ nuclei. For 12 Arg side chains of the DNA-binding domain of the Antp protein, we measured the geminal 15Nā??15N...
nmrlearner Journal club 0 05-29-2018 06:45 PM
[NMR paper] Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy.
Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy. J Phys Chem B. 2018 03 01;122(8):2368-2378 Authors: Khirich G, Holliday MJ, Lin JC, Nandy A Abstract One-dimensional heteronuclear relaxation dispersion NMR...
nmrlearner Journal club 0 05-20-2018 05:57 AM
Partially-deuterated samples of HET-s(218ā??289) fibrils: assignment and deuterium isotope effect
Partially-deuterated samples of HET-s(218ā??289) fibrils: assignment and deuterium isotope effect Abstract Fast magic-angle spinning and partial sample deuteration allows direct detection of 1H in solid-state NMR, yielding significant gains in mass sensitivity. In order to further analyze the spectra, 1H detection requires assignment of the 1H resonances. In this work, resonance assignments of backbone HN and HĪ± are presented for HET-s(218ā??289) fibrils, based on the existing assignment of CĪ±, CĪ², Cā??, and N resonances. The samples used are...
nmrlearner Journal club 0 01-11-2017 01:23 AM
[NMR paper] Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1? NMR Measurements: Application to Protein Backbone Dynamics Measurements.
Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1? NMR Measurements: Application to Protein Backbone Dynamics Measurements. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1? NMR Measurements: Application to Protein Backbone Dynamics Measurements. J Phys Chem B. 2016 Aug 8; Authors: Kurauskas V, Weber E, Hessel A, Ayala I, Marion D, Schanda P Abstract Transverse relaxation rate measurements in MAS solid-state NMR...
nmrlearner Journal club 0 08-09-2016 02:42 PM
Assessment of chemical exchange in tryptophanā??albumin solution through 19 F multicomponent transverse relaxation dispersion analysis
Assessment of chemical exchange in tryptophanā??albumin solution through 19 F multicomponent transverse relaxation dispersion analysis Abstract A number of NMR methods possess the capability of probing chemical exchange dynamics in solution. However, certain drawbacks limit the applications of these NMR approaches, particularly, to a complex system. Here, we propose a procedure that integrates the regularized nonnegative least squares (NNLS) analysis of multiexponential T2 relaxation into Carrā??Purcellā??Meiboomā??Gill (CPMG) relaxation dispersion...
nmrlearner Journal club 0 04-22-2015 12:40 AM
[NMR paper] Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins.
Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins. J Biomol NMR. 2013 Jan 12; Authors: Kim S, Wu KP, Baum J Abstract Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back...
nmrlearner Journal club 0 02-03-2013 10:22 AM
[NMR paper] NMR spectroscopic characterization of millisecond protein folding by transverse relaxation dispersion measurements.
NMR spectroscopic characterization of millisecond protein folding by transverse relaxation dispersion measurements. Related Articles NMR spectroscopic characterization of millisecond protein folding by transverse relaxation dispersion measurements. J Am Chem Soc. 2005 Sep 28;127(38):13207-12 Authors: Zeeb M, Balbach J The cold shock protein CspB adopts its native and functional tertiary structure on the millisecond time scale. We employed transverse relaxation NMR methods, which allow a quantitative measurement of the cooperativity of this...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Ferritin effect on the transverse relaxation of water: NMR microscopy at 9.4 T.
Ferritin effect on the transverse relaxation of water: NMR microscopy at 9.4 T. Related Articles Ferritin effect on the transverse relaxation of water: NMR microscopy at 9.4 T. Magn Reson Med. 1996 Apr;35(4):514-20 Authors: Gottesfeld Z, Neeman M Accumulation of ferritin, the iron storage protein, has been linked recently to aging and a number of pathologies. Noninvasive detection of iron storage by MRI relies on its extremely strong effect on water relaxation. The aim of this article is to characterize the effect of ferritin on transverse...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:15 PM.


Map