Abstract Aromatic side chains are prevalent in protein binding sites, perform functional roles in enzymatic catalysis, and form an integral part of the hydrophobic core of proteins. Thus, it is of great interest to probe the conformational dynamics of aromatic side chains and its response to biologically relevant events. Indeed, measurements of 13C relaxation rates in aromatic moieties have a long history in biomolecular NMR, primarily in the context of samples without isotope enrichment that avoid complications due to the strong coupling between neighboring 13C spins present in uniformly enriched proteins. Recently established protocols for specific 13C labeling of aromatic side chains enable measurement of 13C relaxation that can be analyzed in a straightforward manner. Here we present longitudinal- and transverse-relaxation optimized pulse sequences for measuring R 1, R 2, and {1H}â??13C NOE in specifically 13C-labeled aromatic side chains. The optimized R 1 and R 2 experiments offer an increase in sensitivity of up to 35 % for medium-sized proteins, and increasingly greater gains are expected with increasing molecular weight and higher static magnetic field strengths. Our results highlight the importance of controlling the magnetizations of water and aliphatic protons during the relaxation period in order to obtain accurate relaxation rate measurements and achieve full sensitivity enhancement. We further demonstrate that potential complications due to residual two-bond 13Câ??13C scalar couplings or dipolar interactions with neighboring 1H spins do not significantly affect the experiments. The approach presented here should serve as a valuable complement to methods developed for other types of protein side chains.
Content Type Journal Article
Category Article
Pages 1-10
DOI 10.1007/s10858-012-9650-5
Authors
Ulrich Weininger, Center for Molecular Protein Science, Department of Biophysical Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
Carl Diehl, Center for Molecular Protein Science, Department of Biophysical Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
Mikael Akke, Center for Molecular Protein Science, Department of Biophysical Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
Translational Diffusion of Macromolecular Assemblies Measured Using Transverse-Relaxation-Optimized Pulsed Field Gradient NMR
Translational Diffusion of Macromolecular Assemblies Measured Using Transverse-Relaxation-Optimized Pulsed Field Gradient NMR
Reto Horst, Arthur L. Horwich and Kurt Wu?thrich
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206531c/aop/images/medium/ja-2011-06531c_0003.gif
Journal of the American Chemical Society
DOI: 10.1021/ja206531c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/NWK45WCbths
nmrlearner
Journal club
0
09-26-2011 06:54 PM
Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR.
Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR.
Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR.
J Am Chem Soc. 2011 Sep 16;
Authors: Horst R, Horwich AL, Wüthrich K
Abstract
ABSTRACT In structural biology, pulsed field gradient (PFG) NMR for characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution...
nmrlearner
Journal club
0
09-17-2011 08:21 PM
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy.
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy.
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy.
J Biomol NMR. 2011 May 28;
Authors: Sugase K
We developed a new method to elucidate the binding kinetics k(on) and k(off), and the dissociation constant K(D) (=k(off)/k(on)), of protein-protein interactions without observable bound resonances of the protein of interest due to high molecular...
nmrlearner
Journal club
0
06-01-2011 02:30 PM
Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation
Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation
Abstract The measurements of cross-correlated relaxation rates between HNâ??N and Cβâ??Cγ intraresidual and sequential dipolar interactions is demonstrated in ASN, ASP and aromatic residues. The experiment can be used for deuterated samples and no additional knowledge such as Karplus parametrizations is required for the analysis. The data constitutes a new type of information since no other method relates the Cβâ??Cγ bond to HNâ??N. Using this method the dominant populations of rotamer...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic aci
Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic acids.
Related Articles Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic acids.
J Am Chem Soc. 2004 Sep 1;126(34):10560-70
Authors: Miclet E, Williams Jr DC, Clore GM, Bryce DL, Boisbouvier J, Bax A
A large fraction of hydrogens in proteins and nucleic acids is of the methylene type. Their detailed study, however, in terms of structure and dynamics by NMR spectroscopy is hampered by their fast relaxation properties, which give...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy.
Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy.
Related Articles Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy.
J Am Chem Soc. 2002 Oct 30;124(43):12898-902
Authors: Pervushin K, Vögeli B, Eletsky A
A general method to enhance the sensitivity of the multidimensional NMR experiments performed at high-polarizing magnetic field via the significant reduction of the longitudinal proton relaxation times is described. The method is based on the use of two vast pools of "thermal bath" 1H spins residing on...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX
Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles.
Related Articles Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles.
Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2358-63
Authors: Fernández C, Adeishvili K, Wüthrich K
The (2)H,(13)C,(15)N-labeled, 148-residue integral membrane protein OmpX from Escherichia coli was reconstituted with dihexanoyl phosphatidylcholine (DHPC) in mixed micelles...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMRwiki tweet] nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.n
nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.nmrwiki.org/question/199/
nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.nmrwiki.org/question/199/
Source: NMRWiki tweets