Truncated BPTI missing residues 1 and 2 is investigated together with variants thereof (Lys-15, Arg-17, and Arg-42 are replaced by other residues in various combinations). A comparison of the X-ray structure of BPTI with that of 3-58BPTI(K15R,R17A,R42S) shows only minor variations for the backbone, but the lack of salt bridge between the terminals and the lack of two N-terminal residues provide a structure open at one end. Comparisons of amide exchange rates show a dramatic increase for the most slowly exchanging NH protons of 3-58BPTI and the analogues thereof, as compared to those of the wild-type despite only small differences in the structures. The amide exchange rates for truncated analogues increase with decreasing TTEP (temperature top endothermic peak) values. On the basis of the known structural changes comparisons to 13C chemical shifts are made. 13C chemical shifts are assigned using the D-isotope and HMBC techniques. Excellent resolution is obtained in these 1D natural abundance spectra. 13C NMR chemical shifts are shown to be able to gauge structural changes. A comparison of 13C chemical shifts of WT BPTI (aprotinin) and 3-58BPTI reveals effects caused by (i) the removal of the salt bridge of the terminii, (ii) the charge of the N-terminus, and (iii) the increased mobility of the side chain of Tyr-23. Small effects are also seen due to a conformational change of the aromatic ring of Phe-4. Ring current shifts at 13C chemical shifts are calculated. The difference in the calculated ring current effects are small comparing the wild-type with 3-58BPTI(K15R,R17A,R42S) provided the structures are relaxed. Protein unfolding as a function of pH and temperature is studied by DSC. Unfolding occurs at lower temperature with N-terminally truncated analogues, and the maximum is shifted toward higher pH.
Structure and Dynamicsof Mycobacterium tuberculosis Truncated HemoglobinN: Insights from NMR Spectroscopy and MolecularDynamics Simulations
Structure and Dynamicsof Mycobacterium tuberculosis Truncated HemoglobinN: Insights from NMR Spectroscopy and MolecularDynamics Simulations
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi201059a/aop/images/medium/bi-2011-01059a_0006.gif
Biochemistry
DOI: 10.1021/bi201059a
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/sSrnnNxPk8g
More...
nmrlearner
Journal club
0
12-02-2011 02:31 PM
Siderocalin Q83 exhibits differential slow dynamics upon ligand binding
Siderocalin Q83 exhibits differential slow dynamics upon ligand binding
Abstract Siderocalin Q83 is a small soluble protein that has the ability to bind two different ligands (enterobactin and arachidonic acid) simultaneously in two distinct binding sites. Here we report that Q83 exhibits an intriguing dynamic behavior. In its free form, the protein undergoes significant micro-to-millisecond dynamics. When binding arachidonic acid, the motions of the arachidonic acid binding site are quenched while the dynamics at the enterobactin binding site increases. Reciprocally, enterobactin...
[NMR paper] Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solutio
Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR.
Related Articles Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3409-13
Authors: Klein-Seetharaman J, Yanamala NV, Javeed F, Reeves PJ, Getmanova EV, Loewen MC, Schwalbe H, Khorana HG
G protein-coupled receptors are cell-surface seven-helical membrane proteins that undergo conformational changes on activation. The mammalian photoreceptor, rhodopsin, is the...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Differential isotype labeling strategy for determining the structure of myristoylated
Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy.
Related Articles Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy.
J Biomol NMR. 1998 Feb;11(2):135-52
Authors: Tanaka T, Ames JB, Kainosho M, Stryer L, Ikura M
The three-dimensional solution structure of recombinant bovine myristoylated recoverin in the Ca(2+)-free state has been refined using an array of isotope-assisted multidimensional heteronuclear NMR...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Rab7: NMR and kinetics analysis of intact and C-terminal truncated constructs.
Rab7: NMR and kinetics analysis of intact and C-terminal truncated constructs.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Rab7: NMR and kinetics analysis of intact and C-terminal truncated constructs.
Proteins. 1997 Feb;27(2):204-9
Authors: Neu M, Brachvogel V, Oschkinat H, Zerial M, Metcalf P
Rab proteins are a family of approximately 25kD ras-related GTPases which are associated with distinct intracellular membranes where they...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Rab7: NMR and kinetics analysis of intact and C-terminal truncated constructs.
Rab7: NMR and kinetics analysis of intact and C-terminal truncated constructs.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Rab7: NMR and kinetics analysis of intact and C-terminal truncated constructs.
Proteins. 1997 Feb;27(2):204-9
Authors: Neu M, Brachvogel V, Oschkinat H, Zerial M, Metcalf P
Rab proteins are a family of approximately 25kD ras-related GTPases which are associated with distinct intracellular membranes where they...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] Differential modulation of binding loop flexibility and stability by Arg50 and Arg52
Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy.
Biochemistry. 1996 Apr 16;35(15):4784-94
Authors: Cai M, Huang Y, Prakash O, Wen...