BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-30-2015, 12:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default (13)C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1.

(13)C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1.

(13)C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1.

J Biomol NMR. 2015 Jan 29;

Authors: Abraham SJ, Cheng RC, Chew TA, Khantwal CM, Liu CW, Gong S, Nakamoto RK, Maduke M

Abstract
CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state (13)C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H(+)) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H(+)-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl(-)-permeation pathway, to the extracellular solution. The H(+)-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H(+) binding is mechanistically coupled to closing of the intracellular access-pathway for Cl(-).


PMID: 25631353 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
13 C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1
13 C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1 Abstract CLC transporters catalyze the exchange of Clâ?? for H+ across cellular membranes. To do so, they must couple Clâ?? and H+ binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been...
nmrlearner Journal club 0 01-28-2015 05:28 PM
[NMR paper] Ligand-induced conformational change of Plasmodium falciparum AMA1 detected using (19)F NMR.
Ligand-induced conformational change of Plasmodium falciparum AMA1 detected using (19)F NMR. Related Articles Ligand-induced conformational change of Plasmodium falciparum AMA1 detected using (19)F NMR. J Med Chem. 2014 Jul 28; Authors: Ge X, MacRaild CA, Devine S, Debono CO, Wang G, Scammells PJ, Scanlon MJ, Anders RF, Foley M, Norton RS Abstract We established an efficient means of probing ligand-induced conformational change in the malaria drug target AMA1 using 19F NMR. AMA1 was labeled with 5-fluorotryptophan (5F-Trp) and...
nmrlearner Journal club 0 07-30-2014 10:22 AM
[NMR paper] Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR.
Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. J Biomol NMR. 2013 Sep 7; Authors: Tumulka F, Roos C, Löhr F, Bock C, Bernhard F, Dötsch V, Abele R Abstract The ATP binding cassette transporter TAPL translocates cytosolic peptides into the lumen of lysosomes driven by the hydrolysis of ATP. Functionally, this transporter can be...
nmrlearner Journal club 0 09-10-2013 08:44 PM
[Question from NMRWiki Q&A forum] Distinguish between protonation and conformational change?
Distinguish between protonation and conformational change? Hi all, In a folded protein with 13C-delta labeled glutamates, how can one distinguish between chemical shift due to protonation and chemical shift due to conformational changes? Thanks.
nmrlearner News from other NMR forums 0 02-24-2011 11:30 PM
[NMR paper] Detection of a conformational change in maltose binding protein by (129)Xe NMR spectr
Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy. Related Articles Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy. J Am Chem Soc. 2001 Sep 5;123(35):8616-7 Authors: Rubin SM, Spence MM, Dimitrov IE, Ruiz EJ, Pines A, Wemmer DE
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Irreversible conformational change of bacterio-opsin induced by binding of retinal du
Irreversible conformational change of bacterio-opsin induced by binding of retinal during its reconstitution to bacteriorhodopsin, as studied by (13)C NMR. Related Articles Irreversible conformational change of bacterio-opsin induced by binding of retinal during its reconstitution to bacteriorhodopsin, as studied by (13)C NMR. J Biochem. 2000 May;127(5):861-9 Authors: Yamaguchi S, Tuzi S, Tanio M, Naito A, Lanyi JK, Needleman R, Saitô H We compared (13)C NMR spectra of Ala- and Val-labeled bacterio-opsin (bO), produced either by bleaching bR...
nmrlearner Journal club 0 11-18-2010 09:15 PM
NMR evidence of GM1-induced conformational change of substance P using isotropic bice
NMR evidence of GM1-induced conformational change of substance P using isotropic bicelles. Related Articles NMR evidence of GM1-induced conformational change of substance P using isotropic bicelles. Biochim Biophys Acta. 2010 Oct 8; Authors: Gayen A, Goswami SK, Mukhopadhyay C Substance P (SP) is one of the target neurotransmitters associated with diseases related to chronic inflammation, pain and depression. The selective receptor for SP, NK(1)R is located in the heterogeneous microdomains or caveolaes in membrane. Gangliosides, specifically...
nmrlearner Journal club 0 10-13-2010 02:18 PM
[NMR paper] Mapping the nucleotide-dependent conformational change of human N-ras p21 in solution
Mapping the nucleotide-dependent conformational change of human N-ras p21 in solution by heteronuclear-edited proton-observed NMR methods. Related Articles Mapping the nucleotide-dependent conformational change of human N-ras p21 in solution by heteronuclear-edited proton-observed NMR methods. Biochemistry. 1993 Jul 6;32(26):6763-72 Authors: Hu JS, Redfield AG Heteronuclear-edited proton-detected NMR methods are used to study the nucleotide-dependent conformational change between GDP- and GTP gamma S-bound forms of human N-ras p21. Amide...
nmrlearner Journal club 0 08-22-2010 03:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:17 PM.


Map