Related Articles(13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin.
Biophys J. 2002 Nov;83(5):2812-25
Authors: Damberg P, Jarvet J, Allard P, Mets U, Rigler R, Gräslund A
Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C labeled in the ring epsilon-carbons of the single tyrosine residue. To eliminate effects of differences in peptide concentration, the same motilin sample was used in both experiments. NMR relaxation rates of the tyrosine ring C(epsilon)-H(epsilon) vectors, measured at four magnetic field strengths (9.4, 11.7, 14.1, and 18.8 Tesla) were used to map the spectral density function. When the data were analyzed using dynamic models with the same number of components, the dynamic parameters from NMR and fluorescence are in excellent agreement. However, the estimated rotational correlation times depend on the choice of dynamic model. The correlation times estimated from the two-component model-free approach and the three-component models were significantly different (1.7 ns and 2.2 ns, respectively). Various earlier studies of protein dynamics by NMR and fluorescence were compared. The rotational correlation times estimated by NMR for samples with high protein concentration were on average 18% longer for folded monomeric proteins than the corresponding times estimated by fluorescence polarization anisotropy decay, after correction for differences in viscosity due to temperature and D(2)O/H(2)O ratio.
[NMR paper] New approaches to the dynamic interpretation and prediction of NMR relaxation data fr
New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins.
Related Articles New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins.
Curr Opin Struct Biol. 2003 Apr;13(2):175-83
Authors: Brüschweiler R
NMR relaxation experiments of isotopically labeled proteins provide a wealth of information on reorientational global and local dynamics on nanosecond and subnanosecond timescales for folded and nonfolded proteins in solution. Recent methodological advances in the...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
Related Articles Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
J Biomol Struct Dyn. 1996 Oct;14(2):211-24
Authors: Krushelnitsky AG, Fedotov VD, Spevacek J, Straka J
Temperature dependencies of 1H non-selective NMR T1 and T2 relaxation times measured at two resonance frequencies and natural abundance 13C NMR relaxation times T1 and T1r measured at room temperature have been studied in a set of dry and wet solid proteins - Bacterial...
nmrlearner
Journal club
0
08-22-2010 02:20 PM
[NMR paper] Tubulin-tyrosine ligase catalyzes covalent binding of 3-fluoro-tyrosine to tubulin: k
Tubulin-tyrosine ligase catalyzes covalent binding of 3-fluoro-tyrosine to tubulin: kinetic and NMR studies.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Tubulin-tyrosine ligase catalyzes covalent binding of 3-fluoro-tyrosine to tubulin: kinetic and NMR studies.
FEBS Lett. 1995 Oct 30;374(2):165-8
Authors: Monasterio O, Nova E, López-Brauet A, Lagos R
The use of 3-fluoro-tyrosine as an alternative substrate for the enzyme tubulin:tyrosine ligase which catalyzes the...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] 15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand bi
15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand binding and implications for calcineurin recognition.
Related Articles 15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand binding and implications for calcineurin recognition.
Biochemistry. 1994 Apr 12;33(14):4093-100
Authors: Cheng JW, Lepre CA, Moore JM
Backbone dynamics of the ligand- (FK506-) bound protein FKBP-12 (107 amino acids) have been examined using 15N relaxation data derived from inverse-detected two-dimensional...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] 15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand bi
15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand binding and implications for calcineurin recognition.
Related Articles 15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand binding and implications for calcineurin recognition.
Biochemistry. 1994 Apr 12;33(14):4093-100
Authors: Cheng JW, Lepre CA, Moore JM
Backbone dynamics of the ligand- (FK506-) bound protein FKBP-12 (107 amino acids) have been examined using 15N relaxation data derived from inverse-detected two-dimensional...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin.
Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin.
Related Articles Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin.
Biochemistry. 1990 Jun 12;29(23):5567-74
Authors: Herzfeld J, Das Gupta SK, Farrar MR, Harbison GS, McDermott AE, Pelletier SL, Raleigh DP, Smith SO, Winkel C, Lugtenburg J
Solid-state 13C MAS NMR spectra were obtained for dark-adapted bacteriorhodopsin (bR) labeled with Tyr. Difference spectra (labeled minus natural abundance) taken at pH values between 2 and...
nmrlearner
Journal club
0
08-21-2010 10:48 PM
A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implicati
A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implications for Probing Tyrosine Side Chains in Proteins.
Related Articles A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implications for Probing Tyrosine Side Chains in Proteins.
J Phys Chem B. 2010 Aug 16;
Authors: Zhu J, Lau JY, Wu G
We report experimental characterization of (17)O quadrupole coupling (QC) and chemical shift (CS) tensors for the phenolic oxygen in three l-tyrosine (l-Tyr) compounds: l-Tyr, l-Tyr.HCl, and Na(2)(l-Tyr)....