BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-20-2015, 10:09 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 13 C- and 1 H-detection under fast MAS for the study of poorly available proteins: application to sub-milligram quantities of a 7 trans-membrane protein

13 C- and 1 H-detection under fast MAS for the study of poorly available proteins: application to sub-milligram quantities of a 7 trans-membrane protein

Abstract


We demonstrate that 13C-detected spectra recorded using fast (60Â*kHz) magic angle spinning on sub-milligram (
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins Abstract Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of 1H, 13C, and 15N resonances and structural analysis in fully protonated proteins. We demonstrate that 13C detected 3D experiments are highly efficient and permit assignments of the majority of backbone resonances, as shown in an 89-residue dynein light chain 8, LC8 protein. With these experiments, we...
nmrlearner Journal club 0 11-11-2014 11:57 AM
[NMR paper] Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins.
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. Related Articles Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. J Biomol NMR. 2014 Nov 9; Authors: Guo C, Hou G, Lu X, O'Hare B, Struppe J, Polenova T Abstract Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of (1)H, (13)C, and (15)N...
nmrlearner Journal club 0 11-10-2014 10:59 PM
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...
nmrlearner Journal club 0 10-21-2011 10:04 PM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem. 2005 Sep;6(9):1693-700 Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Combined frequency- and time-domain NMR spectroscopy. Application to fast protein res
Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment. Related Articles Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment. J Biomol NMR. 2004 May;29(1):57-64 Authors: Brutscher B A simple and general method is presented to simplify multi-dimensional NMR spectra of isotope-labeled bio-molecules. The approach is based on band-selective Hadamard-type frequency encoding, which disperses the correlation peaks into different sub-spectra. This makes...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins.
A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. Related Articles A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J Biomol NMR. 2001 May;20(1):11-4 Authors: Zhou P, Lugovskoy AA, Wagner G Protein-fusion constructs have been used with great success for enhancing expression of soluble recombinant protein and as tags for affinity purification. Unfortunately the most popular tags, such as GST and MBP, are large, which hinders direct NMR studies of the fusion proteins. Cleavage of the...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Using NMR to study fast dynamics in proteins: methods and applications.
Using NMR to study fast dynamics in proteins: methods and applications. Related Articles Using NMR to study fast dynamics in proteins: methods and applications. Curr Opin Pharmacol. 2010 Oct 6; Authors: Sapienza PJ, Lee AL Proteins exist not as singular structures with precise coordinates, but rather as fluctuating bodies that move rapidly through an enormous number of conformational substates. These dynamics have important implications for understanding protein function and for structure-based drug design. NMR spectroscopy is particularly well...
nmrlearner Journal club 0 10-12-2010 02:52 PM
[NMR paper] Trans-membrane peptide and protein structures in fluid membranes via NMR.
Trans-membrane peptide and protein structures in fluid membranes via NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Trans-membrane peptide and protein structures in fluid membranes via NMR. Biophys J. 1995 Nov;69(5):1631-2 Authors: Bloom M
nmrlearner Journal club 0 08-22-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:25 PM.


Map