BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-28-2016, 06:22 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default (1) H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In Vitro and In Situ.

(1) H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In Vitro and In Situ.

Related Articles (1) H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In Vitro and In Situ.

Angew Chem Int Ed Engl. 2016 Sep 27;

Authors: Medeiros-Silva J, Mance D, Daniëls M, Jekhmane S, Houben K, Baldus M, Weingarth M

Abstract
(1) H detection can significantly improve solid-state NMR spectral sensitivity and thereby allows studying more complex proteins. However, the common prerequisite for (1) H detection is the introduction of exchangeable protons in otherwise deuterated proteins, which has thus far significantly hampered studies of partly water-inaccessible proteins, such as membrane proteins. Herein, we present an approach that enables high-resolution (1) H-detected solid-state NMR (ssNMR) studies of water-inaccessible proteins, and that even works in highly complex environments such as cellular surfaces. In particular, the method was applied to study the K(+) channel KcsA in liposomes and in situ in native bacterial cell membranes. We used our data for a dynamic analysis, and we show that the selectivity filter, which is responsible for ion conduction and highly conserved in K(+) channels, undergoes pronounced molecular motion. We expect this approach to open new avenues for biomolecular ssNMR.


PMID: 27671832 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] In situ microscopic studies on the structures and phase behaviors of SF/PEG films using solid-state NMR and Raman imaging.
In situ microscopic studies on the structures and phase behaviors of SF/PEG films using solid-state NMR and Raman imaging. In situ microscopic studies on the structures and phase behaviors of SF/PEG films using solid-state NMR and Raman imaging. Phys Chem Chem Phys. 2016 Jun 3; Authors: Chen C, Yao T, Tu S, Xu W, Han Y, Zhou P Abstract In order to overcome the drawbacks of silk fibroin (SF)-based materials, SF has been blended with some polymers. Before using the blend material, understanding of the structures and phase...
nmrlearner Journal club 0 06-04-2016 11:08 AM
[NMR paper] Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization.
Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization. Related Articles Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization. J Biomol NMR. 2015 Jan 30; Authors: Chevelkov V, Xiang S, Giller K, Becker S, Lange A, Reif B Abstract In this work, we show how the water flip-back approach that is widely employed in solution-state NMR can be adapted to...
nmrlearner Journal club 0 01-31-2015 04:16 PM
Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization
Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization Abstract In this work, we show how the water flip-back approach that is widely employed in solution-state NMR can be adapted to proton-detected MAS solid-state NMR of highly deuterated proteins. The scheme allows to enhance the sensitivity of the experiment by decreasing the recovery time of the proton longitudinal magnetization. The method relies on polarization transfer from non-saturated water to the protein...
nmrlearner Journal club 0 01-30-2015 12:15 PM
[NMR paper] Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b5.
Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b5. Related Articles Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b5. J Magn Reson. 2014 Mar 1;242C:169-179 Authors: Pandey MK, Vivekanandan S, Yamamoto K, Im S, Waskell L, Ramamoorthy A Abstract Solid-state NMR spectroscopy is increasingly used in the high-resolution structural studies of membrane-associated proteins and peptides. Most such studies necessitate...
nmrlearner Journal club 0 03-25-2014 11:49 AM
[NMR paper] Proton-Detected 2D Radio Frequency Driven Recoupling Solid-state NMR Studies on Micelle-associated Cytochrome-b5
Proton-Detected 2D Radio Frequency Driven Recoupling Solid-state NMR Studies on Micelle-associated Cytochrome-b5 Publication date: Available online 1 March 2014 Source:Journal of Magnetic Resonance</br> Author(s): Manoj Kumar Pandey , Subramanian Vivekanandan , Kazutoshi Yamamoto , Sangchoul Im , Lucy Waskell , Ayyalusamy Ramamoorthy</br> Solid-state NMR spectroscopy is increasingly used in the high-resolution structural studies of membrane-associated proteins and peptides. Most such studies necessitate isotopically labeled (13C, 15N and 2H) proteins/peptides,...
nmrlearner Journal club 0 03-02-2014 01:53 AM
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy Abstract Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the...
nmrlearner Journal club 0 09-20-2012 06:06 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angew Chem Int Ed Engl. 2011 Apr 20; Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner Journal club 0 04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angew Chem Int Ed Engl. 2011 Apr 14; Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner Journal club 0 04-16-2011 12:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:45 AM.


Map