BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-21-2013, 02:34 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus.

(1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus.

Related Articles (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus.

Biomol NMR Assign. 2013 May 18;

Authors: Fonner BA, Tripet BP, Lui M, Zhu H, Lei B, Copié V

Abstract
Staphylococcus aureus is an opportunistic pathogen that causes skin and severe infections in mammals. Critical to S. aureus growth is its ability to scavenge iron from host cells. To this effect, S. aureus has evolved a sophisticated pathway to acquire heme from hemoglobin (Hb) as a preferred iron source. The pathway is comprised of nine iron-regulated surface determinant (Isd) proteins involved in heme capture, transport, and degradation. A key protein of the heme acquisition pathway is the surface-anchored hemoglobin receptor protein IsdB, which is comprised of two NEAr transporter (NEAT) domains that act in concert to bind Hb and extract heme for subsequent transfer to downstream acquisition pathway proteins. Despite significant advances in the structural knowledge of other Isd proteins, the structural mechanisms and molecular basis of the IsdB-mediated heme acquisition process are not well understood. In order to provide more insights into the mode of function of IsdB, we have initiated NMR structural studies of the first NEAT domain of IsdB (IsdB(N1)). Herein, we report the near complete (1)H, (13)C and (15)N resonance assignments of backbone and side chain atoms, and the secondary structural topology of the 148-residue IsdB NEAT 1 domain. The NMR results are consistent with the presence of eight ?-strands and one ?-helix characteristic of an immunoglobulin-like fold observed in other NEAT domain family proteins. This work provides a solid framework to obtain atomic-level insights toward understanding how IsdB mediates IsdB-Hb protein-protein interactions critical for heme capture and transfer.


PMID: 23686822 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of BPSL1050 from Burkholderia pseudomallei.
(1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of BPSL1050 from Burkholderia pseudomallei. Related Articles (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of BPSL1050 from Burkholderia pseudomallei. Biomol NMR Assign. 2013 Apr 25; Authors: Gaudesi D, Quilici G, Musco G Abstract BPSL1050 is a 13.9*kDa protein produced by the Gram-negative bacterium Burkholderia pseudomallei, the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1050...
nmrlearner Journal club 0 04-26-2013 12:10 PM
[NMR paper] (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments for the N-terminal RNA recognition motif of the HvGR-RBP1 protein involved in the regulation of barley (Hordeum vulgare L.) senescence.
(1)H, (13)C, (15)N backbone and side chain NMR resonance assignments for the N-terminal RNA recognition motif of the HvGR-RBP1 protein involved in the regulation of barley (Hordeum vulgare L.) senescence. (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments for the N-terminal RNA recognition motif of the HvGR-RBP1 protein involved in the regulation of barley (Hordeum vulgare L.) senescence. Biomol NMR Assign. 2013 Feb 17; Authors: Mason KE, Tripet BP, Parrott D,...
nmrlearner Journal club 0 02-19-2013 04:09 PM
[NMR paper] Backbone and partial side chain assignment of the microtubule binding domain of the MAP1B light chain.
Backbone and partial side chain assignment of the microtubule binding domain of the MAP1B light chain. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Backbone and partial side chain assignment of the microtubule binding domain of the MAP1B light chain. Biomol NMR Assign. 2013 Jan 22; Authors: Orbán-Németh Z, Henen MA, Geist L, Zerko S, Saxena S, Stanek J, Ko?mi?ski W, Propst F, Konrat R Abstract Microtubule-associated protein 1B (MAP1B) is a classical...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Backbone and side chain NMR resonance assignments for an archaeal homolog of the endonuclease Nob1 involved in ribosome biogenesis.
Backbone and side chain NMR resonance assignments for an archaeal homolog of the endonuclease Nob1 involved in ribosome biogenesis. Backbone and side chain NMR resonance assignments for an archaeal homolog of the endonuclease Nob1 involved in ribosome biogenesis. Biomol NMR Assign. 2011 Jul 6; Authors: Veith T, Wurm JP, Duchardt-Ferner E, Weis B, Martin R, Safferthal C, Bohnsack MT, Schleiff E, Wöhnert J Eukaryotic ribosome biogenesis requires the concerted action of ~200 auxiliary protein factors on the nascent ribosome. For many of these...
nmrlearner Journal club 0 07-07-2011 05:12 PM
Backbone and side chain NMR assignments for the intrinsically disordered cytoplasmic domain of human neuroligin-3.
Backbone and side chain NMR assignments for the intrinsically disordered cytoplasmic domain of human neuroligin-3. Backbone and side chain NMR assignments for the intrinsically disordered cytoplasmic domain of human neuroligin-3. Biomol NMR Assign. 2011 Jun 7; Authors: Wood K, Paz A, Dijkstra K, Scheek RM, Otten R, Silman I, Sussman JL, Mulder FA Neuroligins act as heterophilic adhesion molecules at neuronal synapses. Their cytoplasmic domains interact with synaptic scaffolding proteins, and have been shown to be intrinsically disordered. Here we...
nmrlearner Journal club 0 06-08-2011 11:30 AM
[NMR paper] Residual backbone and side-chain 13C and 15N resonance assignments of the intrinsic t
Residual backbone and side-chain 13C and 15N resonance assignments of the intrinsic transmembrane light-harvesting 2 protein complex by solid-state Magic Angle Spinning NMR spectroscopy. Related Articles Residual backbone and side-chain 13C and 15N resonance assignments of the intrinsic transmembrane light-harvesting 2 protein complex by solid-state Magic Angle Spinning NMR spectroscopy. J Biomol NMR. 2005 Apr;31(4):279-93 Authors: Gammeren AJ, Hulsbergen FB, Hollander JG, Groot HJ This study reports the sequence specific chemical shifts...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts
Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts in horse cytochrome c. Related Articles Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts in horse cytochrome c. Protein Sci. 2003 Sep;12(9):2104-8 Authors: Liu W, Rumbley J, Englander SW, Wand AJ The mutant of horse heart cytochrome c was expressed in E. coli during growth on isotopically enriched minimal media. Complete resonance assignments of both the diamagnetic reduced (spin zero) and paramagnetic oxidized (spin (1/2))...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in fold
Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. Related Articles Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845-58 Authors: Zhang O, Kay LE, Olivier JP, Forman-Kay JD The backbone 1H and 15N resonances of the N-terminal SH3 domain of the Drosophila signaling adapter...
nmrlearner Journal club 0 08-22-2010 03:29 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:57 PM.


Map