BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-07-2019, 05:49 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default [ASAP] Tuning Protein Diffusivity with Membrane Tethers

[ASAP] Tuning Protein Diffusivity with Membrane Tethers



Biochemistry
DOI: 10.1021/acs.biochem.8b01150



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[ASAP] Cd(II)- and Pb(II)-Induced Self-Assembly of Peripheral Membrane Domains from Protein Kinase C
Cd(II)- and Pb(II)-Induced Self-Assembly of Peripheral Membrane Domains from Protein Kinase C https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b01235/20181228/images/medium/bi-2018-01235k_0005.gif Biochemistry DOI: 10.1021/acs.biochem.8b01235 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/zc9miHD6jE8 More...
nmrlearner Journal club 0 01-07-2019 05:49 AM
[ASAP] Extrinsic Tryptophans as NMR Probes of Allosteric Coupling in Membrane Proteins: Application to the A2A Adenosine Receptor
Extrinsic Tryptophans as NMR Probes of Allosteric Coupling in Membrane Proteins: Application to the A2A Adenosine Receptor Matthew T. Eddy, Zhan-Guo Gao, Philip Mannes, Nilkanth Patel, Kenneth A. Jacobson, Vsevolod Katritch, Raymond C. Stevens, Kurt Wüthrich https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.8b03805/20180620/images/medium/ja-2018-03805n_0006.gif Journal of the American Chemical Society DOI: 10.1021/jacs.8b03805 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-21-2018 09:01 AM
[ASAP] Watching Three-Dimensional Movements of Single Membrane Proteins in Lipid Bilayers
Watching Three-Dimensional Movements of Single Membrane Proteins in Lipid Bilayers https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00253/20180412/images/medium/bi-2018-00253y_0005.gif Biochemistry DOI: 10.1021/acs.biochem.8b00253 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/0_6ur9PV8uU More...
nmrlearner Journal club 0 04-13-2018 01:15 AM
[NMR paper] Rational tuning of fluorobenzene probes for cysteine-selective protein modification
Rational tuning of fluorobenzene probes for cysteine-selective protein modification Fluorobenzene probes for protein profiling through selective cysteine labeling have been developed by rational reactivity tuning. Tuning was achieved by selecting an electron-withdrawing para-substituent combined with variation of the number of fluorine substituents. Optimized probes chemo-selectively arylated cysteine residues in proteins under aqueous conditions. Probes linked to azide, biotin or a fluorophore were applicable to labeling of eGFP and albumin. Selective inhibition of cysteine proteases...
nmrlearner Journal club 0 02-22-2018 02:48 PM
[U. of Ottawa NMR Facility Blog] NMR Signals in Tuning Curves
NMR Signals in Tuning Curves The quality of the tuning and matching of an NMR probe on a Bruker NMR spectrometer can be monitored by using the wobble (or "wobb") routine in the TOPSPIN software. This routine sweeps the frequency using low power and displays a plot corresponding roughly to the absorbance vs frequency for the probe electronics. If the probe has very high sensitivity (eg: a cryoprobe) and contains a sample rich in protons (eg: water) then one is able to observe the proton spectrum in the frequency swept wobble curve. This is demonstrated in the figure below which shows...
nmrlearner News from NMR blogs 0 11-18-2015 03:25 PM
Signal enhancement in protein NMR using the spin-noise tuning optimum
Signal enhancement in protein NMR using the spin-noise tuning optimum Abstract We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the optimal tuning condition, which may be offset by several 100 kHz from the conventional tuning settings using the noise response of the water protons as an indicator. Although the radio frequency-pulse durations are...
nmrlearner Journal club 0 10-09-2010 03:03 AM
Signal enhancement in protein NMR using the spin-noise tuning optimum.
Signal enhancement in protein NMR using the spin-noise tuning optimum. Signal enhancement in protein NMR using the spin-noise tuning optimum. J Biomol NMR. 2010 Oct 6; Authors: Nausner M, Goger M, Bendet-Taicher E, Schlagnitweit J, Jerschow A, Müller N We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the...
nmrlearner Journal club 0 10-07-2010 10:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:23 PM.


Map