BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-07-2018, 03:45 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default [ASAP] Structural Regulation of a Neurofilament-Inspired Intrinsically Disordered Protein Brush by Multisite Phosphorylation

[ASAP] Structural Regulation of a Neurofilament-Inspired Intrinsically Disordered Protein Brush by Multisite Phosphorylation



Biochemistry
DOI: 10.1021/acs.biochem.8b00007



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR probing and visualization of correlated structural fluctuations in intrinsically disordered proteins.
NMR probing and visualization of correlated structural fluctuations in intrinsically disordered proteins. NMR probing and visualization of correlated structural fluctuations in intrinsically disordered proteins. Phys Chem Chem Phys. 2017 Apr 11;: Authors: Kurzbach D, Beier A, Vanas A, Flamm AG, Platzer G, Schwarz TC, Konrat R Abstract A novel statistical analysis of paramagnetic relaxation enhancement (PRE) and paramagnetic relaxation interference (PRI) based nuclear magnetic resonance (NMR) data is proposed based on the...
nmrlearner Journal club 0 04-12-2017 10:57 AM
[NMR paper] Tyrosine Phosphorylation within the Intrinsically Disordered Cytosolic Domains of the B-Cell Receptor: An NMR-Based Structural Analysis.
Tyrosine Phosphorylation within the Intrinsically Disordered Cytosolic Domains of the B-Cell Receptor: An NMR-Based Structural Analysis. Related Articles Tyrosine Phosphorylation within the Intrinsically Disordered Cytosolic Domains of the B-Cell Receptor: An NMR-Based Structural Analysis. PLoS One. 2014;9(4):e96199 Authors: Rosenlöw J, Isaksson L, Mayzel M, Lengqvist J, Orekhov VY Abstract Intrinsically disordered proteins are found extensively in cell signaling pathways where they often are targets of posttranslational...
nmrlearner Journal club 0 04-29-2014 12:04 PM
[NMR paper] NMR contributions to structural dynamics studies of intrinsically disordered proteins.
NMR contributions to structural dynamics studies of intrinsically disordered proteins. Related Articles NMR contributions to structural dynamics studies of intrinsically disordered proteins. J Magn Reson. 2014 Apr;241:74-85 Authors: Konrat R Abstract Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic...
nmrlearner Journal club 0 03-25-2014 11:49 AM
NMR contributions to structural dynamics studies of intrinsically disordered proteins
NMR contributions to structural dynamics studies of intrinsically disordered proteins Publication date: April 2014 Source:Journal of Magnetic Resonance, Volume 241</br> Author(s): Robert Konrat</br> Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development...
nmrlearner Journal club 0 03-21-2014 12:52 AM
[NMR paper] Structural characterization of intrinsically disordered proteins by NMR spectroscopy.
Structural characterization of intrinsically disordered proteins by NMR spectroscopy. Structural characterization of intrinsically disordered proteins by NMR spectroscopy. Molecules. 2013;18(9):10802-28 Authors: Kosol S, Contreras-Martos S, Cedeño C, Tompa P Abstract Recent advances in NMR methodology and techniques allow the structural investigation of biomolecules of increasing size with atomic resolution. NMR spectroscopy is especially well-suited for the study of intrinsically disordered proteins (IDPs) and intrinsically disordered...
nmrlearner Journal club 0 09-07-2013 09:54 PM
[NMR paper] Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy.
Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy. Related Articles Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy. Chembiochem. 2013 Jun 6; Authors: Amata I, Maffei M, Igea A, Gay M, Vilaseca M, Nebreda AR, Pons M Abstract Intrinsically disordered regions (IDRs) are preferred sites for post-translational modifications essential for regulating protein function. The enhanced local...
nmrlearner Journal club 0 06-08-2013 02:18 PM
Quantitative Analysisof Multisite Protein–LigandInteractions by NMR: Binding of Intrinsically Disordered p53 TransactivationSubdomains with the TAZ2 Domain of CBP
Quantitative Analysisof Multisite Protein–LigandInteractions by NMR: Binding of Intrinsically Disordered p53 TransactivationSubdomains with the TAZ2 Domain of CBP Munehito Arai, Josephine C. Ferreon and Peter E. Wright http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja209936u/aop/images/medium/ja-2011-09936u_0012.gif Journal of the American Chemical Society DOI: 10.1021/ja209936u http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/ak4BxkITHl8
nmrlearner Journal club 0 02-16-2012 05:24 AM
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. J Biol Chem. 2011 Apr 20; Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner Journal club 0 04-22-2011 02:00 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:51 AM.


Map