[ASAP] Selecting for Fast Protein–Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP
Selecting for Fast Protein–Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP
https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00172/20180426/images/medium/bi-2018-00172v_0005.gif
Biochemistry
DOI: 10.1021/acs.biochem.8b00172
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/oiN796Yul0U
More...
nmrlearner
Journal club
0
04-27-2018 10:26 PM
[ASAP] Extratelomeric Binding of the Telomere Binding Protein TRF2 at the PCGF3 Promoter Is G-Quadruplex Motif-Dependent
Extratelomeric Binding of the Telomere Binding Protein TRF2 at the PCGF3 Promoter Is G-Quadruplex Motif-Dependent
https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00019/20180410/images/medium/bi-2018-00019w_0005.gif
Biochemistry
DOI: 10.1021/acs.biochem.8b00019
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/kty9sAc251I
More...
nmrlearner
Journal club
0
04-12-2018 01:01 AM
[ASAP] Changes in Protein Dynamics in Escherichia coli SufS Reveal a Possible Conserved Regulatory Mechanism in Type II Cysteine Desulfurase Systems
Changes in Protein Dynamics in Escherichia coli SufS Reveal a Possible Conserved Regulatory Mechanism in Type II Cysteine Desulfurase Systems
https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b01275/20180404/images/medium/bi-2017-012754_0008.gif
Biochemistry
DOI: 10.1021/acs.biochem.7b01275
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/RiC9C-kPHns
More...
nmrlearner
Journal club
0
04-06-2018 01:51 AM
[ASAP] CH···O Hydrogen Bonds Mediate Highly Specific Recognition of Methylated CpG Sites by the Zinc Finger Protein Kaiso
CH···O Hydrogen Bonds Mediate Highly Specific Recognition of Methylated CpG Sites by the Zinc Finger Protein Kaiso
https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00065/20180326/images/medium/bi-2018-000652_0009.gif
Biochemistry
DOI: 10.1021/acs.biochem.8b00065
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/118Z2L1ywRw
More...
nmrlearner
Journal club
0
03-27-2018 06:28 AM
[NMR paper] A combination of 19F NMR and surface plasmon resonance for site-specific hit selection and validation of fragment molecules that bind to the ATP-binding site of a kinase.
A combination of 19F NMR and surface plasmon resonance for site-specific hit selection and validation of fragment molecules that bind to the ATP-binding site of a kinase.
A combination of 19F NMR and surface plasmon resonance for site-specific hit selection and validation of fragment molecules that bind to the ATP-binding site of a kinase.
Bioorg Med Chem. 2018 Feb 22;:
Authors: Nagatoishi S, Yamaguchi S, Katoh E, Kajita K, Yokotagawa T, Kanai S, Furuya T, Tsumoto K
Abstract
19F NMR has recently emerged as an efficient,...
nmrlearner
Journal club
0
03-08-2018 01:24 PM
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Chem Biol Drug Des. 2011 Jan 14;
Authors: Chandra K, Mustafi SM, Muthukumar S, Chary KV
The study of protein-ligand interaction has been of a great interest in contemporary structural biology. The understanding of the nature...
nmrlearner
Journal club
0
01-18-2011 10:22 PM
[NMR paper] An NMR method for the determination of protein-binding interfaces using dioxygen-indu
An NMR method for the determination of protein-binding interfaces using dioxygen-induced spin-lattice relaxation enhancement.
Related Articles An NMR method for the determination of protein-binding interfaces using dioxygen-induced spin-lattice relaxation enhancement.
J Am Chem Soc. 2005 Apr 27;127(16):5826-32
Authors: Sakakura M, Noba S, Luchette PA, Shimada I, Prosser RS
Using oxygen as a paramagnetic probe, researchers can routinely study topologies and protein-binding interfaces by NMR. The paramagnetic contribution to the amide (1)H...