BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-19-2022, 10:43 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default [ASAP] Combined Pulsed Electron Double Resonance EPR and Molecular Dynamics Investigations of Calmodulin Suggest Effects of Crowding Agents on Protein Structures

[ASAP] Combined Pulsed Electron Double Resonance EPR and Molecular Dynamics Investigations of Calmodulin Suggest Effects of Crowding Agents on Protein Structures



Biochemistry
DOI: 10.1021/acs.biochem.2c00099


More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Enhancing sensitivity of Double Electron-Electron Resonance (DEER) by using Relaxation-Optimized Acquisition Length Distribution (RELOAD) scheme
Enhancing sensitivity of Double Electron-Electron Resonance (DEER) by using Relaxation-Optimized Acquisition Length Distribution (RELOAD) scheme Publication date: January 2019 Source: Journal of Magnetic Resonance, Volume 298 Author(s): Sergey Milikisiyants, Maxim A. Voinov, Antonin Marek, Morteza Jafarabadi, Jing Liu, Rong Han, Shenlin Wang, Alex I. Smirnov Abstract
nmrlearner Journal club 0 01-07-2019 05:49 AM
[ASAP] g-Tensor Directions in the Protein Structural Frame of Hyperthermophilic Archaeal Reduced Rieske-Type Ferredoxin Explored by 13C Pulsed Electron Paramagnetic Resonance
g-Tensor Directions in the Protein Structural Frame of Hyperthermophilic Archaeal Reduced Rieske-Type Ferredoxin Explored by 13C Pulsed Electron Paramagnetic Resonance https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00438/20180620/images/medium/bi-2018-00438r_0006.gif Biochemistry DOI: 10.1021/acs.biochem.8b00438 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/GfViSnJYGKs More...
nmrlearner Journal club 0 06-21-2018 10:11 PM
Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR
From The DNP-NMR Blog: Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR Smith, A.A., et al., Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR. J Chem Phys, 2013. 139(21): p. 214201. http://www.ncbi.nlm.nih.gov/pubmed/24320373
nmrlearner News from NMR blogs 0 05-06-2014 01:57 AM
[NMR paper] pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study.
pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study. J Phys Chem B. 2013 Apr 11;117(14):3689-706 Authors: Toal S, Meral D, Verbaro D, Urbanc B, Schweitzer-Stenner R Abstract...
nmrlearner Journal club 0 09-24-2013 10:18 AM
[NMR paper] Detection of the water-binding sites of the oxygen-evolving complex of Photosystem II using W-band 17O electron-electron double resonance-detected NMR spectroscopy.
Detection of the water-binding sites of the oxygen-evolving complex of Photosystem II using W-band 17O electron-electron double resonance-detected NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Detection of the water-binding sites of the oxygen-evolving complex of Photosystem II using W-band 17O electron-electron double resonance-detected NMR spectroscopy. J Am Chem Soc. 2012 Oct 10;134(40):16619-34 Authors: Rapatskiy L, Cox N, Savitsky A, Ames WM, Sander J,...
nmrlearner Journal club 0 03-02-2013 11:45 AM
Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure
Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure Abstract Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utilityâ??using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterionsâ??by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5...
nmrlearner Journal club 0 06-25-2012 04:41 AM
Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme
Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 216</br> Elka R. Georgieva, Aritro S. Roy, Vladimir M. Grigoryants, Petr P. Borbat, Keith A. Earle, Charles P. Scholes, Jack H. Freed</br> Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant...
nmrlearner Journal club 0 03-13-2012 03:33 PM
Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme
Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 24 January 2012</br> Elka R.*Georgieva, Aritro S.*Roy, Vladimir M.*Grigoryants, Petr P.*Borbat, Keith A.*Earle, ...</br> Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the...
nmrlearner Journal club 0 01-25-2012 08:56 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:06 PM.


Map