Selenoglutathione Diselenide: Unique Redox Reactionsin the GPx-Like Catalytic Cycle and Repairing of Disulfide Bonds inScrambled Protein
Selenoglutathione Diselenide: Unique Redox Reactionsin the GPx-Like Catalytic Cycle and Repairing of Disulfide Bonds inScrambled Protein
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00751/20171012/images/medium/bi-2017-00751x_0011.gif
Biochemistry
DOI: 10.1021/acs.biochem.7b00751
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/-9PJRYOwVz8
More...
[NMR paper] NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis.
NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis.
NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis.
Biomol NMR Assign. 2015 Jul 3;
Authors: Kubá? V, Nová?ek J, Bumba L, Žídek L
Abstract
The self-processing module (SPM) is an internal segment of the FrpC protein (P415-F591) secreted by the pathogenic Gram-negative bacterium Neisseria meningitidis during meningococcal infection of human upper respiratory...
nmrlearner
Journal club
0
07-05-2015 02:07 AM
Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase
Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase
Abstract
Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 310-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as...
nmrlearner
Journal club
0
01-09-2015 03:58 PM
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis
Abstract The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation, rigorous enzymatic assays of isomerization are required. However, most measures of isomerase activity require significant constraints on substrate sequence and only yield rate constants for the cis isomer,
kcatcis and apparent Michaelis constants,
...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
J Biomol NMR. 2011 Sep;51(1-2):21-34
Authors: Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK
Abstract
The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation,...
nmrlearner
Journal club
0
09-30-2011 05:59 AM
[NMR paper] NMR structure of the hypothetical protein NMA1147 from Neisseria meningitidis reveals
NMR structure of the hypothetical protein NMA1147 from Neisseria meningitidis reveals a distinct 5-helix bundle.
Related Articles NMR structure of the hypothetical protein NMA1147 from Neisseria meningitidis reveals a distinct 5-helix bundle.
Proteins. 2004 May 15;55(3):756-8
Authors: Liu G, Sukumaran DK, Xu D, Chiang Y, Acton T, Goldsmith-Fischman S, Honig B, Montelione GT, Szyperski T
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] High-resolution solution structure of the inhibitor-free catalytic fragment of human
High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR.
Related Articles High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR.
Biochemistry. 1998 Feb 10;37(6):1495-504
Authors: Moy FJ, Chanda PK, Cosmi S, Pisano MR, Urbano C, Wilhelm J, Powers R
The high-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase (MMP-1), a...