BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR career > Job marketplace
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-15-2013, 08:52 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default PhD positions available in solid-state DNP at BMRZ Frankfurt

From the The DNP-NMR Blog:

PhD positions available in solid-state DNP at BMRZ Frankfurt

Dear Colleagues,


Please take notice of the below attached job posting. I'd appreciate if you could forward it to anyone who might be interested. Additional information is available on http://www.solidstatednp.com/jobs.html.


Applications are invited for PhD positions in solid-state DNP Spectroscopy in an Emmy Noether research group by Björn Corzilius at the Goethe University Frankfurt/Main, Germany. Salary will be according to E13 TV-G-U on 67% part-time basis. The PhD students will be placed at the seam between the BMRZ and the Institute of Physical and Theoretical Chemistry.


The research group focuses on method development and basic research of DNP towards biomolecular applications. Possible topics are:


i) Development and investigation of site-specific DNP using molecular model systems
ii) Investigation of endogenous paramagnetic centers of biomolecules as polarizing agents for DNP.


Qualification requirements


To qualify, the applicant must hold a diploma or masters degree or a qualification deemed equivalent in chemistry, physics, biochemistry, or biophysics. The applicant must be ambitious and demonstrate a strong motivation and an appropriate background to help develop the proposed research area. Experience in magnetic resonance methods is beneficial but not required. Good language skills in English are a crucial requirement.


We offer a comprehensive training in magnetic resonance methods, including solid-state NMR, EPR, and DNP. The applicant will work in a cutting-edge field situated at the seam between EPR and NMR and will therefore gain an invaluable integral knowledge and expertise in the field of magnetic resonance. Experiments will be performed using state-of-the-art instrumentation at the BMRZ or external collaboration sites.


The successful candidate must have very good collaborative skills, have integrity and be flexible and capable of working in a structured and efficient way. The successful candidates should also be able to contribute to the innovative climate within the group.


Please send your relevant and comprehensive application material to Björn Corzilius: corzilius@em.uni-frankfurt.de.




Dr. Björn Corzilius
Emmy Noether Research Group Leader
Institute for Physical and Theoretical Chemistry,
Institute for Biophysical Chemistry,
and Center for Biomolecular Magnetic Resonance (BMRZ)


Goethe University Frankfurt
Building N140, Room 1


Max-von-Laue-Str. 7
60438 Frankfurt am Main


phone: +49-(0)69-798-29467
fax: +49-(0)69-798-29404


eMail: corzilius@em.uni-frankfurt.de


====================================
This is the AMPERE MAGNETIC RESONANCE mailing list:
http://www.drorlist.com/nmrlist.html


NMR web database:
http://www.drorlist.com/nmr.html


Go to the The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.
Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation. Chem Commun (Camb). 2012 Nov 25;48(91):11199-201 ...
nmrlearner Journal club 0 03-30-2013 12:59 PM
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ? Songlin Wang and Yoshitaka Ishii http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja212190z/aop/images/medium/ja-2011-12190z_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja212190z http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/6EE7uthrnLg
nmrlearner Journal club 0 01-31-2012 08:34 PM
[NMR tweet] Nuclear Magnetic Resonance in Solid Polymers (Cambridge Solid State Science Series): http://amzn.to/hkIpfU
Nuclear Magnetic Resonance in Solid Polymers (Cambridge Solid State Science Series): http://amzn.to/hkIpfU Published by Tishaqi30 (Tisha Rohlf) on 2011-04-27T07:31:46Z Source: Twitter
nmrlearner Twitter NMR 0 04-27-2011 07:40 AM
[Question from NMRWiki Q&A forum] optimising o1 in solid state nmr
optimising o1 in solid state nmr I'm a little bit confused about setting o1, in the case of a solid sample First o1 is the offset of the transmitter frequency so sfo1 = BF1 + o1In my case I have to set Sfo1 = BF1 so I must set o1 = 0 HzSecond there is another way to optimize o1 whish is by applying gs and looking the fid, adjusting o1 until we have a good exponential decrease of the fid. In this case o1 value may not be 0 Hz.Does the second technique is valid in solid stat experiences?And which one I have to use? Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 03-09-2011 04:19 AM
[NMR paper] Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel
Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Related Articles Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Sci. 1998 Feb;7(2):342-8 Authors: Kim Y, Valentine K, Opella SJ, Schendel SL, Cramer WA The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190...
nmrlearner Journal club 0 11-17-2010 11:06 PM
Ph.D. and postdoctoral positions in hyper-dimensional NMR : Frankfurt-am-Main Germany
Employer: Institute of Biophysical Chemistry Website: http://www.bpc.uni-frankfurt.... Location: Frankfurt am Main, Germany Posted: June 24, 2009 Expires: September 23, 200 The research group of Prof. Peter Güntert at the Institute of Biophysical Chemistry of the Goethe University Frankfurt am Main invites applications for Ph.D. and postdoctoral positions in Hyper-dimensional NMR spectroscopy for automated protein structure determination. The positions are funded for three years by a research grant of the DFG (Deutsche Forschungsgemeinschaft). The research project involves the...
jaravine Job marketplace 0 07-01-2009 03:08 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:04 PM.


Map