View Single Post
  #1  
Unread 12-28-2015, 12:26 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,910
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy

From The DNP-NMR Blog:

Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy


Day, S.E., M.I. Kettunen, F.A. Gallagher, D.-E. Hu, M. Lerche, J. Wolber, K. Golman, J.H. Ardenkjaer-Larsen, and K.M. Brindle, Nat Med, 13, (2007)


http://dx.doi.org/10.1038/nm1650


Measurements of early tumor responses to therapy have been shown, in some cases, to predict treatment outcome. We show in lymphoma-bearing mice injected intravenously with hyperpolarized [1-13C]pyruvate that the lactate dehydrogenase–catalyzed flux of13C label between the carboxyl groups of pyruvate and lactate in the tumor can be measured using 13C magnetic resonance spectroscopy and spectroscopic imaging, and that this flux is inhibited within 24 h of chemotherapy. The reduction in the measured flux after drug treatment and the induction of tumor cell death can be explained by loss of the coenzyme NAD(H) and decreases in concentrations of lactate and enzyme in the tumors. The technique could provide a new way to assess tumor responses to treatment in the clinic.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No